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ABSTRACT

Cancer is one of the most common causes of death worldwide. However, the increased incidence of cancer mortality is attributed to
the increased resistance of tumor to the available therapeutic modalities. Although the significant progression that has been made in
tumor treatments, these available therapeutic opportunities provide only limited benefit for patients in advanced stages. In addition
to their adverse effects, current anticancer agents suffer from insufficient specificity toward tumor cells because of the difficulty to
target cancer cells without damaging the healthy ones. Naturally occurring bioactive molecules occupy an essential part of the
available anticancer agents. These bioactive molecules are derived mainly from natural sources and have been successfully approved
for tumor treatment. Although the efficiency of bioactive molecules is variable and mostly associated with threatening side effects,
their clinical application in cancer treatment is indispensable. In this review, we will focus on the molecular action, potential and
limitation of bioactive molecules as anticancer agent in tumor therapy.

ll{eywords: BCR-ABL, VX-680, CML, Tyrosine kinase, Pharmacophore

. alterations of signal transduction pathways that are directly
Introduction linked to cell death machinery, cell survival and maintenance.
These cellular alteration can be expressed in the form of
genetic and/or epigenetic changes of essential key components
of the aberrant signaling pathways leading to their destruction
or excessive activation [3,4]. Although there is significant
progression in recent years, the key problem in tumor
treatments is the development of drug resistance and
threatening side effects [5-7]. Apart from the expected adverse
effects, current anticancer agents suffer from insufficient

specificity toward tumor cells [8,9]. Naturally occurring drugs,

Cancer continues to be one of the main causes of death
worldwide. The increased resistance to available therapeutic
approaches is the major cause for the increased incidence of
cancer mortality. Although the visibility of available therapeutics
in tumor treatment, their efficiency in the treatment of
advanced tumor stages is limited [1,2]. Besides low efficiency of
most available cancer therapeutics, the difficulty to target
specific cancer cells without the damage of healthy ones is a
challenge for clinicians and patients. Initiation and progression

of cancer are a multi-step process that are associated with the
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also known as bioactive molecules occupy an essential part of
the current anticancer agents. These bioactive molecules cover
a wide spectrum of anticancer agents including, anthracyclines
(doxorubicin, daunorubicin, epirubicin, idarubicin),
camptothecan and its derivatives (topothecan, irinothecin),
podophyllotoxin and its derivatives (etoposide, teniposide),
taxanes (paclitaxel, docetaxel), vinca alkaloids (vinecristine,
vinblastine, vindesine, vinorelbine) and others. Most of these
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bioactive molecules and their modified forms are internationally
approved for cancer treatment. Accordingly, these nature
products still remain the mostly attractive source for anticancer
therapeutics. Thus, the discussion of bioactive molecules based
on their potential and limitation in tumor treatment may help
develop a relevant therapeutic strategy for cancer treatment.

Anticancer Agents Derived From

Plant Origin

The application of bioactive molecules derived from plant
source in tumor treatment started with the discovery of the
vinca alkaloids including, vinblastine and vincristine [10]. These
vinca alkaloids showed a clinical visibility for the treatment of
Hodgkin’s disease and other forms of leukemia [11, 12]. Both
vincristine and vinblastine mediate their anticancer efficiency
by inhibition of microtubule assembly [13,14]. Despite the
advantage of winca alkaloids-derived anticancer agents as
evidenced by the treatment of different tumor types including,
Leukemia [15], Lymophoma [16]; Melanoma [17,18], recurrent
or refractory pediatric low-grade glioma [19], refractory
metastatic prostate [20], a significant resistance to winca
alkaloids-derived therapeutics has been reported in different
tumor types including, renal cell carcinoma (RCC) [21] and
hepatocellular carcinoma (HCC) [22]. Although their
efficiency as anticancer agent in the treatment of melanoma
[23], head and neck squamous cell carcinoma [24,25], prostate
cancer [26], recurrent malignant glioma [27] as well as in the
treatment of cervical, colorectal, endometrial and lung cancers
[28], bioactive molecules derived from taxanes do not provide
benefit for patients with metastatic papillary RCC [29]. These
bioactive molecules mediate their anticancer activity via
mechanism-mediated by the stabilization of microtubules that,
in turn, leads to mitotic arrest [30,31], that ultimately results
in apoptosis [32,33]. Etoposide, bioactive molecules that
function as a topoisomerase II inhibitor have been reported
for its killing efficiency as anticancer agents via mechanism
mediated by stabilization of the enzyme-DNA cleavable
complex leading to DNA breaks[34,35]. These etopside-derived
bioactive molecules showed significant antitumor efficiency in
the treatment of small-cell lung carcinoma [36,37], breast
cancer [38-40], also in the treatment of pediatric cancer
[41,42]. Also, bioactive molecules such as, the camptothecin
derivatives including, irinotecan and topotecan have shown
significant antitumor efficiency in the treatment of colorectal
and ovarian cancers [43-45]. These bioactive molecules have
been demonstrated to mediate their antitumor activity via
mechanism mediated by the inhibition of topoisomerase I
leading to DNA damage and subsequently cell death [46].
Moreover, flavopiridol, a further bioactive molecule that
function as a cyclin-dependent kinase inhibitor has been tested
for its efficiency to trigger cell cycle arrest via mechanism
mediated by the interference with cyclin-dependent kinases
(CDKs) to prevent their phosphorylation and ultimately
inhibition of CDKs-dependent pathways [47].
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Bioactive Molecules Derived From
Marine Sources

The identification of bioactive molecules with anticancer
activities among marine organisms gained more attention in the
recent years. A significant number of compounds derived from
marine organisms have been subjected for preclinical and early
clinical evaluation. These bioactive molecules have been
approved for their clinical relevance as anticancer agent [48,49].
Didemnin B, is one of the first anticancer agent that is isolated
from a marine source. Didemnin B is a cyclic depsipeptide that
showed therapeutic potential against non-Hodgkin’s lymphoma
[50-52]. These marine derived bioactive molecules can mediate
their therapeutic activity through the inhibition of protein
synthesis and/or cell cycle arrest [53]. Also, Aplidine, another
depsipeptide has shown to be more active as anticancer agent
without to produce lifethreatening neuromuscular toxicity
(54,55]. Accordingly, the preclinical data confirmed the
antitumor efficiency of Alpidine against several tumors types.
These Alpidine-induced effects are regulated by a mechanism
mediated through blockade of cell-cycle progression [59]. Also,
the ecteinascidins antitumor bioactive molecules isolated from
marine source have showed a clinical relevance in the treatment
of different tumor types [60]. One of these ecteinascidins is the
selected clinical trial ET-743 that showed its antitumor efficiency
in phase I studies [61]. The molecular action of the bioactive
molecule, ET-743 is mediated by its ability to alkylate selectively
guanine residues in the DNA minor groove [62,63], in addition
to its ability to interact with nuclear proteins [64]. Further
marine bioactive molecules such as dolstatins have beenapproved
for their reliabiility as anticancer agents [65,66]. Dolastatines are
class of peptides, which are isolated from Dolabella auricularia
and showed a significant antitumor activity [67]. These bioactive
molecules mediate their antitumor activity through the
inhibition of microtubule assembly that, in turn, results in cell-
cycle arrest [68].

Bioactive Molecules Derived From
Microorganism Sources

Bioactive molecules derived from microorganisms such as, the
members of anthracycline, bleomycin, actinomycin, mitomycin
and aureolic acid families [69], as well as daunomycin, and its
related agents (e.g. doxorubicin, idarubicin and epirubicin, the
peptolides, the mitosanes and the glycosylated anthracenone
and mithramycin) have been approved for their clinical
relevance as anticancer agents [70-76]. Also, the screening of
natural products derived from a wide range microorganisms led
to the identification of many bioactive molecules with
antitumor activity such as, rapamycin and its analogs [77-79],
geldanamycin [80], and Wortmannin [81]). These anticancer
agents have been reported for their efficiency to inhibit tumor
growth and progression and to mediate their antitumor effects
through inhibition of heatshock protein HSP90[80Q], or the
inhibition of the signal transduction pathway phosphoinositide
3 kinase (PI3K) [81].
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Figure 1: 0 and f tubulin binding sites of bioactive
molecules leading to either stabilization or
destabilization of microtubules up binding to. A)
Microtubule stabilizers include laulimalide and
Peloruside A that bind to laulimalide binding site,
Discodermolide and Dictyostatin binding to the
corresponding binding site, Cyclostreptin,
Eleutherobin, Sarcodictyins A+B and Taxanes
(Paclitaxel, Docataxel, ABI-007 and CT-2103) binding
to taxane binding site, Epothilone B (Ixabepilone,
Patupilone, BMS-310705, ABJ-879, ZKEEPO) and
Epothilone (KOS-862, KPS-1584). B) Microtubule
destablizers include Vinca alkaloids (vincristine,
vinblastine, wvinorelbine, winflunine, halichondrin B,
eribulin, mesylates, crypophycins and dolastatins)
binding to winca binding site, Colchicine, 2-
Methoxyestradiol, Sulphonamides and Aspergillus
derivatives binding to colchicine.

<

AR Transcriptioﬂ

Figure 2: Schematic representation of the bioactive molecule isoflavone- mediated apoptosis in tumor cells, an example for the
molecular action of bioactive molecules as anticancer agent in tumor cells. The exposure of tumor cells to isoflavone results in the
modulation of intracellular signaling pathways that are essential for the regulation of cell fate.
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Mechanistic Action of Bioactive
Molecules in Tumor Cells

The match of bioactive molecules with their biological targets is
essential key to understand the impact of the bioactive
molecules as anticancer agent on the deregulation of cellular
function with the aim to kill tumor cell without to damage

healthy cells.

The mechanistic action of bioactive molecules in tumor cells,
based on experimental studies, is expected to be mediated via
signaling pathways, whose excessive activation or destruction
mediate cell cycle arrest, growth inhibition or cell death [82,83].
These signal transduction pathways including, mitogen-
activated protein kinases (MAPK), protein kinase C (PKC),
phosphoinositide 3- kinase (PI3K), glycogen synthase kinase
(GSK), activator protein-1 (AP-1) and NF-kB pathway have been
shown to be involved in the modulation of the anticancer
activity of bioactive molecules under preclinical and clinical
investigation, even those approved for tumor treatment
[84-86].Thus, the antitumor efficiency of bioactive molecules
reflects their ability to counteract the function of signaling
pathways that are implicated in cell proliferation, tumor
initiation, and progression [85,86]. Bioactive molecules such as,
taxol and vinblastine have been shown to target malfunctioning
components along the disrupted signal transduction pathway in
cancer represents a rational strategy in tumor treatment. For
example, NF-kB and AP-1 provide a mechanistic link between
cancer and inflammation, and are important targets of several
bioactive molecules in tumor treatment [87-90]. Also,
epigenetic mechanisms, which are essential for the
development of carcinogenesis are considered potential targets
of bioactive molecules [91,92]. Thus, epigenetic alteration such
as, DNA methylation, histone modifications and
posttranscriptional gene regulation by non-coding microRNAs
(miRNA) are potential targets of bioactive molecules [93,94].
Although epigenetic alterations are heritable in somatic cells,
these modifications can be reversed and thereby provide a
promising strategy for cancer prevention and treatment. In
contrast to genetic changes such as, mutations and gene
deletion, epigenetic modifications offer a very promising and
attractive condition for tumor prevention and treatment.
Accordingly, several bioactive molecules have been approved for
their potential to reverse the methylation status of methylation
silenced genes [95,96]. Other bioactive molecules such as,
trichosanthin [97], triterpene [98,99], lupeol gained more
attention based on their antioxidant, apoptosis-inducing and
antiproliferative properties, as evidenced by their antitumor
efficiency in vivo and in vitro [100].

The mechanistic action of many bioactive molecules such as,
lupeol has been characterized. These bioactive molecule seems
to be a multi-target agents with immense anti-inflammatory
potential targeting key molecular pathways, which involve NF-
KB, cFLIP, Fas, Kras, phosphatidylinositol-3 Kinase (PI13), AKT
and Wnt/B-catenin in a variety of cells [83,85]. NFKB, a
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transcription factor that is known to be closely involved in the
regulation of the multi-step process of tumorigenesis [101-103].
Whereas, the transcription factor AP-1 is implicated in the
regulation of genes that are essential for cellular adaption,
differentiation and proliferation [104,105].Therefore, the
activation of AP-1 is associated with malignant transformation,
tumor development and progression [106, 107]. Taken
together, most of the bioactive molecules with antitumor
activity mediate their activity by either stabilization or
destabilization of microtubulines. The binding sites of bioactive
molecules that function either as microtubule stabilizers or
destabilizers are outlined in figure 1. The binding of these
bioactive molecules to @ and B microtubules mediates
molecular action that, in turn, triggers signaling pathways,
whose excessive activation or destruction lead to cell arrest or
apoptosis. Figure 2 outlines an example for bioactive molecules-
mediated tumor cell death-dependent pathways.

Conclusion

Bioactive molecules are an important source for anticancer
agents that are currently applied for the treatment of different
tumor types. Although these bioactive molecules are
established as an effective treatment for many types of cancer,
like other cancer therapeutics often cause threatening side
effects. Bioactive molecules- associated side effects vary from
patient to patient as well as tumor type and location;
therapeutic dose and the overall health of the patients can also
take place. Despite their limitation in the treatment of some
tumor types, bioactive molecules provide significant
therapeutic benefit for cancer patients. Thus, the shift from
monotherapy to combination therapy may increase the
therapeutic efficiency of bioactive molecules in tumor
treatment. Also, the continuous improvement of already
approved bioactive molecules in tumor treatment by the
modification of their chemical structures as well as their
bioavailability may provide more benefit to cancer patients.
More importantly, the reduction or elimination of the
undesired adverse effects thats result during the course of the
treatment is a great advantage for patients. Thus, the functional
analysis of the molecular action of the bioactive molecules that
are approved for tumor treatment may help improve their
therapeutic efficiency and reduce expected and unexpected side
effects.
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