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Abstract
Cancer is one of the most common causes of death worldwide. However, the increased incidence of cancer mortality is attributed to 
the increased resistance of tumor to the available therapeutic modalities. Although the significant progression that has been made in 
tumor treatments, these available therapeutic opportunities provide only limited benefit for patients in advanced stages. In addition 
to their adverse effects, current anticancer agents suffer from insufficient specificity toward tumor cells because of the difficulty to 
target cancer cells without damaging the healthy ones. Naturally occurring bioactive molecules occupy an essential part of the 
available anticancer agents. These bioactive molecules are derived mainly from natural sources and have been successfully approved 
for tumor treatment. Although the efficiency of bioactive molecules is variable and mostly associated with threatening side effects, 
their clinical application in cancer treatment is indispensable. In this review, we will focus on the molecular action, potential and 
limitation of bioactive molecules as anticancer agent in tumor therapy.

Bioactive Molecules: Their Potential and Limitation in Tumor 
Therapy

Cancer continues to be one of the main causes of death 
worldwide. The increased resistance to available therapeutic 
approaches is the major cause for the increased incidence of 
cancer mortality. Although the visibility of available therapeutics 
in tumor treatment, their efficiency in the treatment of 
advanced tumor stages is limited [1,2]. Besides low efficiency of 
most available cancer therapeutics, the difficulty to target 
specific cancer cells without the damage of healthy ones is a 
challenge for clinicians and patients. Initiation and progression 
of cancer are a multi-step process that are associated with the 
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alterations of signal transduction pathways that are directly 
linked to cell death machinery, cell survival and maintenance. 
These cellular alteration can be expressed in the form of 
genetic and/or epigenetic changes of essential key components 
of the aberrant signaling pathways leading to their destruction 
or excessive activation [3,4]. Although there is significant 
progression in recent years, the key problem in tumor 
treatments is the development of drug resistance and 
threatening side effects [5-7]. Apart from the expected adverse 
effects, current anticancer agents suffer from insufficient 
specificity toward tumor cells [8,9]. Naturally occurring drugs, 
also known as bioactive molecules occupy an essential part of 
the current anticancer agents. These bioactive molecules cover 
a wide spectrum of anticancer agents including, anthracyclines 
(doxorubicin, daunorubicin, epirubicin, idarubicin), 
camptothecan and its derivatives (topothecan, irinothecin), 
podophyllotoxin and its derivatives (etoposide, teniposide), 
taxanes (paclitaxel, docetaxel), vinca alkaloids (vinecristine, 
vinblastine, vindesine, vinorelbine) and others. Most of these 
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bioactive molecules and their modified forms are internationally 
approved for cancer treatment. Accordingly, these nature 
products still remain the mostly attractive source for anticancer 
therapeutics. Thus, the discussion of bioactive molecules based 
on their potential and limitation in tumor treatment may help 
develop a relevant therapeutic strategy for cancer treatment.
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Anticancer Agents Derived From 
Plant Origin

The application of bioactive molecules derived from plant 
source in tumor treatment started with the discovery of the 
vinca alkaloids including, vinblastine and vincristine [10]. These 
vinca alkaloids showed a clinical visibility for the treatment of 
Hodgkin’s disease and other forms of leukemia [11, 12]. Both 
vincristine and vinblastine mediate their anticancer efficiency 
by inhibition of microtubule assembly [13,14]. Despite the 
advantage of vinca alkaloids-derived anticancer agents as 
evidenced by the treatment of different tumor types including, 
Leukemia [15], Lymophoma [16]; Melanoma [17,18], recurrent 
or refractory pediatric low-grade glioma [19], refractory 
metastatic prostate [20], a significant resistance to vinca 
alkaloids-derived therapeutics has been reported in different 
tumor types including, renal cell carcinoma (RCC) [21] and 
hepatocellular carcinoma (HCC) [22]. Although their 
efficiency as anticancer agent in the treatment of melanoma 
[23], head and neck squamous cell carcinoma [24,25], prostate 
cancer [26], recurrent malignant glioma [27] as well as in the 
treatment of cervical, colorectal, endometrial and lung cancers 
[28], bioactive molecules derived from taxanes do not provide 
benefit for patients with metastatic papillary RCC [29]. These 
bioactive molecules mediate their anticancer activity via 
mechanism-mediated by the stabilization of microtubules that, 
in turn, leads to mitotic arrest [30,31], that ultimately results 
in apoptosis [32,33]. Etoposide, bioactive molecules that 
function as a topoisomerase II inhibitor have been reported 
for  its killing efficiency as anticancer agents via  mechanism 
mediated by stabilization of the enzyme-DNA cleavable 
complex leading to DNA breaks[34,35]. These etopside-derived 
bioactive molecules showed significant antitumor efficiency in 
the treatment of small-cell lung carcinoma [36,37], breast 
cancer [38-40], also in the treatment of pediatric cancer 
[41,42]. Also, bioactive molecules such as, the camptothecin 
derivatives including, irinotecan and topotecan have shown 
significant antitumor efficiency in the treatment of colorectal 
and ovarian cancers [43-45]. These bioactive molecules have 
been demonstrated to mediate their antitumor activity via 
mechanism mediated by the inhibition of topoisomerase I 
leading to DNA damage and subsequently cell death [46]. 
Moreover, flavopiridol, a further bioactive molecule that 
function as a cyclin-dependent kinase inhibitor has been tested 
for its efficiency to trigger cell cycle arrest via mechanism 
mediated by the interference with cyclin-dependent kinases 
(CDKs) to prevent their phosphorylation and ultimately 
inhibition of CDKs-dependent pathways [47].

Bioactive Molecules Derived From 
Marine Sources
The identification of bioactive molecules with anticancer 
activities among marine organisms gained more attention in the 
recent years. A significant number of compounds derived from 
marine organisms have been subjected for preclinical and early 
clinical evaluation. These bioactive molecules have been 
approved for their clinical relevance as anticancer agent [48,49]. 
Didemnin B, is one of the first anticancer agent that is isolated 
from a marine source. Didemnin B is a cyclic depsipeptide that 
showed therapeutic potential against non-Hodgkin’s lymphoma 
[50-52]. These marine derived bioactive molecules can mediate 
their therapeutic activity through the inhibition of protein 
synthesis and/or cell cycle arrest [53]. Also, Aplidine, another 
depsipeptide has shown to be more active as anticancer agent 
without to produce life-threatening neuromuscular toxicity 
[54,55]. Accordingly, the preclinical data confirmed the 
antitumor efficiency of Alpidine against several tumors types. 
These Alpidine-induced effects are regulated by a mechanism 
mediated through blockade of cell-cycle progression [59]. Also, 
the ecteinascidins antitumor bioactive molecules isolated from 
marine source have showed a clinical relevance in the treatment 
of different tumor types [60]. One of these ecteinascidins is the 
selected clinical trial ET-743 that showed its antitumor efficiency 
in phase I studies [61]. The molecular action of the bioactive 
molecule, ET-743 is mediated by its ability to alkylate selectively 
guanine residues in the DNA minor groove [62,63], in addition 
to its ability to interact with nuclear proteins [64]. Further 
marine bioactive molecules such as dolstatins have beenapproved 
for their reliabiility as anticancer agents [65,66]. Dolastatines are 
class of peptides, which are isolated from Dolabella auricularia 
and showed a significant antitumor activity [67]. These bioactive 
molecules mediate their antitumor activity through the 
inhibition of microtubule assembly that, in turn, results in cell-
cycle arrest [68].

Bioactive Molecules Derived From 
Microorganism Sources
Bioactive molecules derived from microorganisms such as, the 
members of anthracycline, bleomycin, actinomycin, mitomycin 
and aureolic acid families [69], as well as daunomycin, and its 
related agents (e.g. doxorubicin, idarubicin and epirubicin, the 
peptolides, the mitosanes and the glycosylated anthracenone 
and mithramycin) have been approved for their clinical 
relevance as anticancer agents [70-76]. Also, the screening of 
natural products derived from a wide range microorganisms led 
to the identification of many bioactive molecules with 
antitumor activity such as, rapamycin and its analogs [77-79], 
geldanamycin [80], and Wortmannin [81]. These anticancer 
agents have been reported for their efficiency to inhibit tumor 
growth and progression and to mediate their antitumor effects 
through inhibition of heat-shock protein HSP90[80], or the 
inhibition of the signal transduction pathway phosphoinositide 
3 kinase (PI3K) [81].
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Figure 1: α and β tubulin binding sites of bioactive 
molecules leading to either stabilization or 
destabilization of microtubules up binding to. A) 
Microtubule stabilizers include laulimalide and 
Peloruside A that bind to laulimalide binding site, 
Discodermolide and Dictyostatin binding to the 
corresponding binding site, Cyclostreptin , 
Eleutherobin, Sarcodictyins A+B and Taxanes 
(Paclitaxel, Docataxel, ABI-007 and CT-2103) binding 
to taxane binding site, Epothilone B (Ixabepilone, 
Patupilone, BMS-310705, ABJ-879, ZK-EPO) and 
Epothilone (KOS-862, KPS-1584). B) Microtubule 
destablizers include Vinca alkaloids (vincristine, 
vinblastine, vinorelbine, vinflunine, halichondrin B, 
eribulin, mesylates, crypophycins and dolastatins) 
binding to vinca binding site, Colchicine, 2-
Methoxyestradiol, Sulphonamides and Aspergillus 
derivatives binding to colchicine.

Figure 2: Schematic representation of the bioactive molecule isoflavone- mediated apoptosis in tumor cells, an example for the 
molecular action of bioactive molecules as anticancer agent in tumor cells. The exposure of tumor cells to isoflavone results in the 
modulation of intracellular signaling pathways that are essential for the regulation of cell fate. 
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The match of bioactive molecules with their biological targets is 
essential key to understand the impact of the bioactive 
molecules as anticancer agent on the deregulation of cellular 
function with the aim to kill tumor cell without to damage 
healthy cells. 

The mechanistic action of bioactive molecules in tumor cells, 
based on experimental studies, is expected  to be mediated via 
signaling pathways, whose excessive activation or destruction 
mediate cell cycle arrest, growth inhibition or cell death [82,83]. 
These signal transduction pathways including, mitogen-
activated protein kinases (MAPK), protein kinase C (PKC), 
phosphoinositide 3- kinase (PI3K), glycogen synthase kinase 
(GSK), activator protein-1 (AP-1) and NF-κB pathway have been 
shown to be involved in the modulation of the anticancer 
activity of bioactive molecules under preclinical and clinical 
investigation, even those approved for tumor treatment 
[84-86].Thus, the antitumor efficiency of bioactive molecules 
reflects their ability to counteract the function of signaling 
pathways that are implicated in cell proliferation, tumor 
initiation, and progression [85,86]. Bioactive molecules such as, 
taxol and vinblastine have been shown to target malfunctioning 
components along the disrupted signal transduction pathway in 
cancer represents a rational strategy in tumor treatment. For 
example, NF-κB and AP-1 provide a mechanistic link between 
cancer and inflammation, and are important targets of several 
bioactive molecules in tumor treatment [87-90]. Also, 
epigenetic mechanisms, which are essential for the 
development of carcinogenesis are considered potential targets 
of bioactive molecules [91,92]. Thus, epigenetic alteration such 
as, DNA methylation, histone modif ications and 
posttranscriptional gene regulation by non-coding microRNAs 
(miRNA) are potential targets of bioactive molecules [93,94]. 
Although epigenetic alterations are heritable in somatic cells, 
these modifications can be reversed and thereby provide a 
promising strategy for cancer prevention and treatment. In 
contrast to genetic changes such as, mutations and gene 
deletion, epigenetic modifications offer a very promising and 
attractive condition for tumor prevention and treatment. 
Accordingly, several bioactive molecules have been approved for 
their potential to reverse the methylation status of methylation 
silenced genes [95,96]. Other bioactive molecules such as, 
trichosanthin [97], triterpene [98,99], lupeol gained more 
attention based on their antioxidant, apoptosis-inducing and 
antiproliferative properties, as evidenced by their antitumor 
efficiency in vivo and in vitro [100].

The mechanistic action of many bioactive molecules such as, 
lupeol has been characterized. These bioactive molecule seems 
to be a multi-target agents with immense anti-inflammatory 
potential targeting key molecular pathways, which involve NF-
κB, cFLIP, Fas, Kras, phosphatidylinositol-3 Kinase (PI3), AKT 
and Wnt/β-catenin in a variety of cells [83,85]. NF-κB, a 
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Conclusion
Bioactive molecules are an important source for anticancer 
agents that are currently applied for the treatment of different 
tumor types. Although these bioactive molecules are 
established as an effective treatment for many types of cancer, 
like other cancer therapeutics often cause threatening side 
effects. Bioactive molecules- associated side effects vary from 
patient to patient as well as tumor type and location; 
therapeutic dose and the overall health of the patients can also 
take place. Despite their limitation in the treatment of some 
tumor types, bioactive molecules provide significant 
therapeutic benefit for cancer patients. Thus, the shift from 
monotherapy to combination therapy may increase the 
therapeutic efficiency of bioactive molecules in tumor 
treatment. Also, the continuous improvement of already 
approved bioactive molecules in tumor treatment by the 
modification of their chemical structures as well as their 
bioavailability may provide more benefit to cancer patients. 
More importantly, the reduction or elimination of the 
undesired adverse effects thats result during the course of the 
treatment is a great advantage for patients. Thus, the functional 
analysis of the molecular action of the bioactive molecules that 
are approved for tumor treatment may help improve their 
therapeutic efficiency and reduce expected and unexpected side 
effects.
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