

VEDIC RESEARCH INTERNATIONAL

Biolological Medicinal Chemistry

JOURNAL HOME PAGE AT WWW.VEDICJOURNALS.COM

eISSN 2330-7250

REVIEW

DOI: http://dx.doi.org/10.14259/bmc.v1i1.4

Thiazoles as Imperative Molecules for Potential Therapeutic Importance

PRATIP K CHASKAR^{1*}, SWAPNIL K CHAUDHARI²

 1 Yadavrao Tasgaonkar Institute of Pharmacy, Chandhai, Bhivpuri Road, Karjat, Maharashtra, India. 2 Sinhgad College of Pharmacy, Vadgaon (Bk.), Pune, India.

Article Info	ABSTRACT
Received: May 18th, 2013	This article outlines the biological significance of one of the most important heterocycles, the
Accepted: June 6th, 2013	thiazoles. An attempt has been made to cover most of the physiologically as well as medicinally
Keywords	important compounds containing thiazole derivatives.
Heterocycles,	
Biological significance,	
Medicinal significance.	

INTRODUCTION

Thiazoles are an important moietywhich is present in a wide variety of drugs and chemicals. Thousands of molecules containing the thiazole nucleus are been tested and evaluated showing a wide range of activities like fungicide and parasiticide, NSAID, sedative and hypnotic, anticancer, antihistaminic, respiratory stimulant, dopamine agonist, xanthine oxidase inhibitor, antibacterials, antihelmintic, veterinary use, etc. Hence, this moiety requires a large exploration in the field of drug discovery and evaluation.

Therapeutic Importance

Thioflavin (a) can refer to either of two dyes used for histology staining. Thioflavin T (Basic Yellow 1 or CI 49005) is used to visualize plaques composed of amyloid beta found in the brains of Alzheimer's disease patients as well as other amyloid proteins [1]. Thioflavin S is also used to stain Alzheimer's plaques. Like Thioflavin T, it binds to amyloid fibrils but not monomers and gives a distinct spectral shift upon binding [1].

*Corresponding Author

Mr. Pratip K Chaskar

Yadavrao Tasgaonkar Institute of Pharmacy, Chandhai, Bhivpuri Road, Karjat, Maharashtra, India.

Phone: +91-9881381552

Email: pratipchaskar_sis@hotmail.com

Luciferin (*b*) is a class of light-emitting biological pigments found in organisms that cause bioluminescence. The term is used generically to refer to any light-emitting molecule utilized by a luciferase or photoprotein [2]. There are many types of luciferins, yet all share the use of reactive oxygen species to emit light [3].

Thiamine (c) is named as the "thio-vitamine" (sulfur-containing vitamin) is a water-soluble vitamin of the B complex. In less severe deficiency, nonspecific signs include malaise, weight loss, irritability and confusion [4].

Riluzole (d) is a drug used to treat amyotrophic lateral sclerosis. It delays the onset of ventilator-dependence or tracheostomy in selected patients and may increase the survival by 3–5 months. Riluzole preferentially blocks TTX sensitive sodium channels, which are associated with damaged neurons [5]. This indirectly prevents stimulation of glutamate receptors [6]. Its antiglutamate action is still detectable in the presence of sodium channel blockers, its potent glutamate uptake activator activity seems to mediate many of its effects [7,8].

$$H_2N$$
 N
 O
 CF_3
 d

Tiabendazole (e) is a fungicide and parasiticide and use in treatment of Aspergillus has been reported [9]. It controls roundworms [10], hookworms, and other helminth species which attack wild animals, livestock and humans [11].

Fenclozic acid (f) is an analgesic, antipyretic and antiinflammatory drug [12].

Meloxicam (g) is a nonsteroidal, anti-inflammatory drug. Meloxicam selectively inhibits COX-2 over COX-1 [13].

$$\begin{array}{c|c}
 & O & OH \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Clomethiazole (h) is a sedative and hypnotic used in treating and preventing symptoms of acute alcohol withdrawal. It acts like a sedative, hypnotic, muscle relaxant and anticonvulsant. It is also used for the management of agitation, restlessness, short-terminsomnia and Parkinson's disease in the elderly [14,15].

Telomestatin (i) is a macrocyclic chemical compound that acts by inhibiting the telomerase activity of the cancer cells [16]. There

will be a decrease in the activity of the telomerase, which is involved in the replication of the telomeres and as a result the cell dies due to Hayflick type senescence.

Ixabepilone (*j*) is an epothilone B analog [17] developed as a cancer drug produced by *Sorangium cellulosum* [18]. Ixabepilone, in combination with capecitabine, has demonstrated effectiveness in the treatment of metastatic or locally advanced breast cancer in patients after failure of an anthracycline and a taxane [19]. It has been investigated for use in treatment of non-Hodgkin's lymphoma [20]. Epothilones prevent cancer cells from dividing by interfering with tubulin [21].

Dasatinib (*k*) is a cancer drug of Src family of tyrosine kinases inhibitor approved for use in patients with chronic myelogenous leukemia (CML). It is being evaluated for use in numerous other cancers, including advanced prostate cancer [22].

Amthamine (*l*) is a histamine agonist selective for the H_2 subtype [23]. It has been used *invitro* and *invivo* to study gastric secretion [24], as well as other functions of the H_2 receptor [25-27].

$$H_2N$$
 S I

Famotidine (m) is a histamine H_2 receptor antagonist that inhibits stomach acid production and it is commonly used in the treatment of peptic ulcer disease and gastroesophageal reflux disease. Famotidine is given to surgery patients before operations to prevent post-operation nausea and to reduce the risk of aspiration pneumonitis. It serves as an alternative to Protonpump inhibitor. Famotidine has also been used in combination with an H_1 antagonist to treat and prevent urticaria caused by an

acute allergic reaction [28].

Ebrotidine (n) is an H₂ receptor antagonist with gastroprotective activity. It has a gastro-protective action against ethanol-, aspirinor stress-induced gastric mucosal damage. Ebrotidine has anti-Helicobacter pylori activity via inhibition of the urease enzyme and the proteolytic and mucolytic activities of the bacterium. Ebrotidine is used for the treatment of gastric or duodenal ulcers or erosive reflux oesophagitis, with significantly better ulcer healing rates in those who smoke [29].

$$\begin{array}{c|c} & & & \\ & & & \\$$

Nizatidine (*o*) is a histamine H₂ receptor antagonist that inhibits stomach acid production and commonly used in the treatment of peptic ulcer disease and gastroesophageal reflux disease. Nizatadine has been used to control weight gain associated with some antipsychotic medication [30].

Amiphenazole (*p*) is a respiratory stimulant traditionally used as an antidote for barbiturate or opiate overdose, usually in combination with bemegride [31,32], as well as poisoning from other sedative drugs [33,34] and treatment of respiratory failure from other causes [35]. It was considered particularly useful as it could counteract the sedation and respiratory depression produced by morphine but with less effect on analgesia [36,37]. It is still rarely used in medicine in some countries, although it has largely been replaced by more effective respiratory stimulants such as doxapram and specific opioid antagonists such as naloxone [38].

Arotinolol (*q*) is a medication in the class of mixed alpha/beta blockers used in the treatment of high blood pressure [39,40]. It has been proposed for use in treatment of essential tremor [41].

Brecanavir (*r*) is a protease inhibitor which has been used for the treatment of HIV [42].

Pramipexole (s) is a non-ergoline dopamine agonist indicated for treating early-stage Parkinson's disease and restless legs syndrome. It is used to counteract the problems with sexual dysfunction [43]. It is also being investigated for the treatment of clinical depression and fibromyalgia [44-46].

Febuxostat (t) is an inhibitor of xanthine oxidase that is indicated for use in the treatment of hyperuricemia and gout [47]. Febuxostat decreases levels of uric acid [48].

3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (*u*) acts as a selective allosteric antagonist of the metabotropic glutamate receptor subtype mGluR₅ [49]. It is more potent and more selective as a mGluR₅ antagonist [50] and produces similar neuroprotective [51], antidepressant [52], analgesic [53,54] and anxiolytic effects [55]. It has anti-addictive effects in a variety of animal models

[56] and also decreasing the addictive effects of nicotine, cocaine and methamphetamine [57].

Ceftriaxone (v) is a third-generation cephalosporin antibiotic having broad spectrum activity against Gram-positive and Gram-negative bacteria. Ceftriaxone is often used for the treatment of community-acquired or mild to moderate health care-associated pneumonia. It is also a choice drug for treatment of bacterial meningitis. In pediatrics, it is commonly used in febrile infants between 4 and 8 weeks of age who are admitted to the hospital to exclude sepsis. It is also used for the treatment of gonorrhea [58]. Ceftriaxone has also been investigated for efficacy in preventing relapse to cocaine addiction [59].

Ceftazidime (w) is a third-generation cephalosporin antibiotic having broad spectrum activity against Gram-positive and Gram-negative bacteria. Ceftazidime is usually reserved for the treatment of infections caused by Pseudomonas aeruginosa. It is also used in the empirical therapy of febrile neutropenia, in combination with other antibiotics. It is used in infection severity, and/or renal function of the recipient. Ceftazidine is first line treatment for the rare tropical infection, melioidosis [60].

Ceftaroline fosamil (x) is an advanced generation [61] cephalosporin antibiotic active against methicillin resistant Staphylococcus aureus and Gram positive bacteria. It retains the activity of later generation cephalosporins having broad spectrum activity against Gram negative bacteria. It is currently being investigated for community acquired pneumonia and complicated skin and skin structure infection [62]. It is also used for the treatment of community-acquired bacterial pneumonia

Cefepime (y) is a fourth-generation cephalosporin antibiotic having extended spectrum of activity against Gram-positive and Gram-negative bacteria [64]. Cefepime is usually reserved to treat moderate to severe nosocomial pneumonia, infections caused by multi-resistant microorganisms and empirical treatment of febrile neutropenia [65].

Cefixime (z) is an oral third generation cephalosporin antibiotic used to treat gonorrhea [66], tonsillitis and pharyngitis [67].

HO
$$\downarrow$$
 O \downarrow N \downarrow

Conclusion

Thiazoles occupy a distinct and unique place in our life. This heterocyclic moiety has great biological and medicinal significance. A large number of thiazole drugs possess a variety of medicinal properties. These properties include amyotrophic lateral sclerosis, Fungicide and parasiticide, NSAIDs, Sedative and hypnotic, anticancer, histaminic agonists, antihistaminic, respiratory stimulant, alpha/beta blockers, protease inhibitor, dopamine agonist, xanthine oxidase inhibitor, metabotropic glutamate receptor subtype mGluR₅ antagonist, antibacterials, antihelmintic and veterinary use.

ABBREVIATIONS

COX-1: Cyclo-oxygenase-1; COX-2: Cyclo-oxygenase-2; HIV: Human Immunodeficiency Virus; mGluR₅: Metabotropic glutamate receptor 5; NSAIDs: Non-steroidal Anti-inflammatory Drugs; TTX: Tetrodotoxin.

REFERENCES

- LeVine III H: [18] Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods in enzymology 1999, 309:274-284.
- 2. Hastings J: Chemistries and colors of bioluminescent reactions: a review. Gene 1996, 173:5-11.
- 3. Hastings J: Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. *Journal of molecular evolution* 1983, 19:309-321.
- Bettendorff L, Wirtzfeld B, Makarchikov AF, Mazzucchelli G, Frédérich M, Gigliobianco T, Gangolf M, De Pauw E, Angenot L, Wins P: Discovery of a natural thiamine adenine nucleotide. Nature chemical biology 2007, 3:211-212.
- Song J-H, Huang C-S, Nagata K, Yeh JZ, Narahashi T: Differential action of riluzole on tetrodotoxinsensitive and tetrodotoxin-resistant sodium channels. Journal of Pharmacology and Experimental Therapeutics 1997, 282:707-714.
- 6. Wokke J: Riluzole. The Lancet 1996, 348:795-799.
- Azbill R, Mu X, Springer J: Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain research 2000, 871:175-180.
- 8. Dunlop J, McIlvain HB, She Y, Howland DS: Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. The Journal of neuroscience 2003, 23:1688-1696.
- Upadhyay MP, West EP, Sharma AP: Keratitis due to Aspergillus flavus successfully treated with thiabendazole. British Journal of Ophthalmology 1980, 64:30-32.
- Igual-Adell R, Oltra-Alcaraz C, Soler-Company E, Sánchez Sánchez P, Matogo-Oyana J, Rodríguez-Calabuig D: Efficacy and safety of ivermectin and thiabendazole in the treatment of strongyloidiasis. Expert opinion on pharmacotherapy 2004, 5:2615-2619.
- Portugal R, Schaffel R, Almeida L, Spector N, Nucci M: Thiabendazole for the prophylaxis of strongyloidiasis in immunosuppressed patients with hematological diseases: a randomized double-blind placebocontrolled study. haematologica 2002, 87:663-664.
- 12. Stacey GJ: ARYL-THIAZOLYL-ACETIC ACID DERIVATIVES. Edited by: Google Patents; 1970.
- Noble S, Balfour JA: Meloxicam. Drugs 1996, 51:424-430; discussion 431-432.
- Bittencourt P, Richens A: Anticonvulsant-Induced Status Epilepticus in Lennox-Gastaut Syndrome. Epilepsia 1981, 22:129-134.
- 15. Reith DM, Fountain J, McDowell R, Tilyard M: Comparison of the fatal toxicity index of zopiclone with benzodiazepines. Clinical Toxicology 2003, 41:975-980.
- 16. Shin-ya K: Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc 2001, 123:1262-1263.

- 17. Goodin S: Novel cytotoxic agents: epothilones. American Journal of Health-System Pharmacy 2008, 65:S10-S15.
- Lee FY, Borzilleri R, Fairchild CR, Kamath A, Smykla R, Kramer R, Vite G: Preclinical discovery of ixabepilone, a highly active antineoplastic agent. Cancer chemotherapy and pharmacology 2008, 63:157-166.
- 19. Thomas ES, Gomez HL, Li RK, Chung H-C, Fein LE, Chan VF, Jassem J, Pivot XB, Klimovsky JV, De Mendoza FH: Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. *Journal of Clinical Oncology* 2007, 25:5210-5217.
- 20. Aghajanian C, Burris HA, Jones S, Spriggs DR, Cohen MB, Peck R, Sabbatini P, Hensley ML, Greco FA, Dupont J: Phase I study of the novel epothilone analog ixabepilone (BMS-247550) in patients with advanced solid tumors and lymphomas. *Journal of clinical oncology* 2007, 25:1082-1088.
- 21. DeVita V, Hellman S, Rosenberg S: Cancer, principles and practice of oncology, l. ippincott Williams & Wilkins. Edited by: Philadelphia; 2005.
- 22. Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV, Shen Z, Cook LS, Doweyko AM, Pitt S: 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl] amino)]-1, 3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. Journal of medicinal chemistry 2006, 49:6819-6832.
- 23. Eriks JC, Van der Goot H, Sterk GJ, Timmerman H: Histamine H2-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4-and 5-(2-aminoethyl) thiazoles. Journal of medicinal chemistry 1992, 35:3239-3246.
- 24. Coruzzi G, Timmerman H, Adami M, Bertaccini G: The new potent and selective histamine H2 receptor agonist amthamine as a tool to study gastric secretion. Naunyn-Schmiedeberg's archives of pharmacology 1993, 348:77-81.
- Ezeamuzie CI, Philips E: Histamine H2 receptors mediate the inhibitory effect of histamine on human eosinophil degranulation. British journal of pharmacology 2000, 131:482-488.
- Fernandez N, Monczor F, Baldi A, Davio C, Shayo C: Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization. Molecular pharmacology 2008, 74:1109-1118.
- Threlfell S, Exley R, Cragg SJ, Greenfield SA: Constitutive histamine H2 receptor activity regulates serotonin release in the substantia nigra. *Journal of neurochemistry* 2008, 107:745-755.
- 28. Humphries T, Merritt G: Review article: drug interactions with agents used to treat acid-related diseases.

 Alimentary pharmacology & therapeutics 1999, 13:18.

- Patel SS, Wilde MI: Ebrotidine. Drugs 1996, 51:974-980; discussion 981.
- Atmaca M, Kuloglu M, Tezcan E, Ustundag B, Kilic N: Nizatidine for the treatment of patients with quetiapine-induced weight gain. Human Psychopharmacology: Clinical and Experimental 2004, 19:37-40.
- 31. Worlock A: Barbiturate poisoning treated with amiphenazole and bemegride. British Medical Journal 1956, 2:1099.
- Mears G: Massive Doses of Bemegride and Amiphennzole in Treatment of Barbiturate Poisoning. British Medical Journal 1958, 1:757.
- Dotevall G, Herner B: Treatment of acute primidone poisoning with bemegride and amiphenazole. British Medical Journal 1957, 2:451.
- 34. Rowell N: Treatment of glutethimide poisoning with bemegride and amiphenazole. *Lancet* 1957, 272:407.
- 35. Little G: Use of amiphenazole in respiratory failure. British medical journal 1962, 1:223.
- 36. McKeogh J, Shaw F: Further experience with amiphenazole and morphine in intractable pain. British Medical Journal 1956, 1:142.
- Gershon S, Bruce D, Orchard N, Shaw F: Amiphenazole and morphine in production of analgesia. British Medical Journal 1958, 2:366.
- Gairola RL, Gupta PK, Pandley K: Antagonists of morphine-induced respiratory depression. A study in postoperative patients. Anaesthesia 1980, 35:17-21.
- Zhao J, Golozoubova V, Cannon B, Nedergaard J:
 Arotinolol is a weak partial agonist on β3-adrenergic receptors in brown adipocytes. Canadian journal of physiology and pharmacology 2001, 79:585-593.
- Huang C-Q, Dong B-R, Zhang Y-L, Wu H-M, Liu Q-X, Flaherty JH: Cognitive impairment and hypertension among Chinese nonagenarians and centenarians. Hypertension Research 2009, 32:554-558.
- Lee K-S, Kim J-S, Kim J-W, Lee W-Y, Jeon B-S, Kim D: A multicenter randomized crossover multiple-dose comparison study of arotinolol and propranolol in essential tremor. Parkinsonism & related disorders 2003, 9:341-347.
- 42. Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V: In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV. Antimicrobial agents and chemotherapy 2007, 51:3147-3154.
- 43. DeBattista C, Solvason HB, Breen JAH, Schatzberg AF: Pramipexole augmentation of a selective serotonin reuptake inhibitor in the treatment of depression. Journal of clinical psychopharmacology 2000, 20:274-275.
- 44. Lattanzi L, Dell'Osso L, Cassano P, Pini S, Rucci P, Houck PR, Gemignani A, Battistini G, Bassi A, Abelli M:

- Pramipexole in treatment-resistant depression: a 16-week naturalistic study. Bipolar Disorders 2002, 4:307-314.
- 45. Cassano P, Lattanzi L, Soldani F, Navari S, Battistini G, Gemignani A, Cassano GB: Pramipexole in treatment-resistant depression: An extended follow-up. Depression and anxiety 2004, 20:131-138.
- 46. Holman AJ, Myers RR: A randomized, double-blind, placebo-controlled trial of pramipexole, a dopamine agonist, in patients with fibromyalgia receiving concomitant medications. Arthritis & Rheumatism 2005, 52:2495-2505.
- Stamp L, O'Donnell J, Chapman P: Emerging therapies in the long-term management of hyperuricaemia and gout. Internal medicine journal 2007, 37:258-266.
- 48. Becker MA, Schumacher Jr HR, Wortmann RL, MacDonald PA, Eustace D, Palo WA, Streit J, Joseph-Ridge N: Febuxostat compared with allopurinol in patients with hyperuricemia and gout. New England Journal of Medicine 2005, 353:2450-2461.
- Cosford ND, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang X, McDonald I: 3-[(2-Methyl-1, 3-thiazol-4-yl) ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. *Journal of medicinal chemistry* 2003, 46:204-206.
- 50. Lea PM, Faden AI: Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS drug reviews 2006, 12:149-166.
- 51. Lea PM, Movsesyan VA, Faden AI: Neuroprotective activity of the mGluR5 antagonists MPEP and MTEP against acute excitotoxicity differs and does not reflect actions at mGluR5 receptors. British journal of pharmacology 2005, 145:527-534.
- 52. Pałucha A, Brański P, Szewczyk B, Wierońska JM, Kłak K, Pilc A: Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacology, biochemistry, and behavior 2005, 81:901.
- 53. Zhu CZ, Wilson SG, Mikusa JP, Wismer CT, Gauvin DM, Lynch III JJ, Wade CL, Decker MW, Honore P: Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities. European journal of pharmacology 2004, 506:107-118.
- 54. Varty GB, Grilli M, Forlani A, Fredduzzi S, Grzelak ME, Guthrie DH, Hodgson RA, Lu SX, Nicolussi E, Pond AJ: The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles. Psychopharmacology 2005, 179:207-217.
- 55. Klodzinska A, Tatarczyńska E, Chojnacka-Wójcik E, Nowak G, Cosford N, Pilc A: Anxiolytic-like effects of MTEP, a potent and selective mGlu5 receptor agonist does not involve GABA (A) signaling. Neuropharmacology

2004, 47:342.

- 56. Cowen MS, Djouma E, Lawrence AJ: The metabotropic glutamate 5 receptor antagonist 3-[(2-methyl-1, 3-thiazol-4-yl) ethynyl]-pyridine reduces ethanol self-administration in multiple strains of alcohol-preferring rats and regulates olfactory glutamatergic systems. Journal of Pharmacology and Experimental Therapeutics 2005, 315:590-600.
- 57. Dravolina OA, Danysz W, Bespalov AY: Effects of group I metabotropic glutamate receptor antagonists on the behavioral sensitization to motor effects of cocaine in rats. Psychopharmacology 2006, 187:397-404.
- Barclay L: Trauma patients with diabetes mellitus have increased hospital morbidity. Medscape Medical News. July 18, 2007. Edited by; 2007.
- Knackstedt LA, Melendez RI, Kalivas PW: Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biological psychiatry 2010, 67:81-84.
- 60. White N: Melioidosis. The Lancet 2003, 361:1715-1722.
- 61. Kollef MH: New antimicrobial agents for methicillinresistant Staphylococcus aureus. Crit Care Resusc 2009,

11:282-286.

- Kanafani ZA, Corey GR: Ceftaroline: a cephalosporin with expanded Gram-positive activity. Future Microbiology 2009, 4:25-33.
- 63. Parish D, Scheinfeld N: Ceftaroline fosamil, a cephalosporin derivative for the potential treatment of MRSA infection. Current opinion in investigational drugs (London, England: 2000) 2008, 9:201.
- 64. Yahav D, Paul M, Fraser A, Sarid N, Leibovici L: Efficacy and safety of cefepime: a systematic review and metaanalysis. The Lancet infectious diseases 2007, 7:338-348.
- 65. Chapman TM, Perry CM: Cefepime: a review of its use in the management of hospitalized patients with pneumonia. *Am J Respir Med* 2003, 2:75-107.
- 66. McMillan A, Young H: The treatment of pharyngeal gonorrhoea with a single oral dose of cefixime. International journal of STD & AIDS 2007, 18:253-254.
- 67. Adam D, Hostalek U, Troster K: 5-day cefixime therapy for bacterial pharyngitis and/or tonsillitis: comparison with 10-day penicillin V therapy. Cefixime Study Group. Infection 1995, 23 Suppl 2:S83-86.

<u>Note:</u> Vedic Research International, Vedic Research Inc is not responsible for any data in the present article including, but not limited to, writeup, figures, tables. If you have any questions, directly contact authors.

Authors Column

Mr. Pratip Kashinath Chaskar

- *Currently working as a lecturer at Yadavrao Tasgaonkar Institute of Pharmacy, Chandhai, Karjat, Maharashtra, India.
- *Completed Master of Pharmacy with Distinction at Sinhgad College of Pharmacy, Pune, Maharashtra, India, in 2010 and Bachelor of Pharmacy with First Class at Anuradha College of Pharmacy, Chikhli, Maharashtra, India, in 2008.
- *Currently featuring as a reviewer in 3 and as an editor in 1 international journal.
- *Has 14 Research and Review Publications in International and National Journals with a total impact factor of 14.527.
- *Active participant in various community activities.