

Vedic Research International BIOLOGICAL MEDICINAL CHEMISTRY

eISSN 2330-7250

JOURNAL HOME PAGE AT WWW.VEDICJOURNALS.COM

RESEARCH ARTICLE

DOI: http://dx.doi.org/10.14259/bmc.v1i2.74

Synthesis and characterization of 3-aryl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione derivatives

VINITA SAHU

Alliance College of Engineering and Design, Alliance, University, Central Campus, Bangalore-562106, Karnataka, India

Article Info: Received: October 3rd, 2013; Accepted: October 12th, 2013

ABSTRACT

A series of 3-aryl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione derivatives have been synthesized. The compounds were synthesized in excellent yields (65-75%) and the structures were established on the basis of corresponding IR, 1H NMR, Mass and elemental analysis data. The purity has been ascertained on the basis of chromatographic resolution using CH₂Cl₂ as eluent.

Keywords: 3-aryl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione, Synthesis, Derivatives, Medicinal use, Energetic

Introduction

Recently there has been considerable interest in the study of the reactivity and properties of six-membered tetrazine heterocycles [1-14]. The high degree of attention given to this heterocyclic system stems from the unique and interesting properties displayed by six-membered tetrazines. Tetrazines have demonstrated powerful synthetic utility through their ability to participate in inverse electron demand Diels-Alder reactions, providing access to a wide range of other heterocycles and natural products. These materials are of use in the area of energetic chemistry. This electroactive, colored ring system typically exhibits high electron affinity, low lying π^* orbitals and $n-\pi^*$ transitions in the visible light region, attractive properties for optical and electroactive material applications. Furthermore, tetrazines also possess high positive heats of formation and crystal densities, properties important in energetic chemistry. The chemistry of tetrazines has gained increased attention in the last few decades, due mostly to their applications in organic synthesis [15,16], crop protection [17,18], pyrotechnics (high

nitrogen content energetic materials [19-20]) etc. Very recently, research to obtain new compounds for their optical and electrochemical properties has become increasingly active because these compounds have a huge potential especially in sensor applications [21-24].

The interesting characteristics features found in many of these tetrazines are their potential biological activity as antiproliferative and antitumorous compounds. s-Tetrazine derivative including hexahydro, 1,6-dihydro, 1,4-dihydro-, 1,2-dihydro- and aromatic s-tetrazine exhibit antitumorous activities with 50% inhibition rate against P-388 cell and A-549 cancer cell growth [25]. Azolotetrazinones have been the focus of medicinal chemists in the past decades because of the outstanding antineoplastic activity exhibited by them. Likewise, mitozolomide [26] and temozolomide [27] have attracted remarkable attention owing to their efficiency against malignant melanoma, mycosis fungoides, and brain tumors. Therefore, it is revealed that a tetrazine ring can be an effective pharmacophore in various types of medicinal activities.

Most of the recent reports on the chemistry of tetrazines have focused on the development of methods for preparing difficult-to-access nonsymmetrically substituted tetrazines. The majority of successful methods use soft, neutral heteroatom nucleophiles for the displacement of leaving groups at the 3 and 6 positions of the tetrazine. The use of hard carbanion nucleophiles results

*Corresponding Author Vinita Sahu, PhD

Alliance College of Engineering and Design, Alliance, University, Central Campus, Bangalore-562106, Karnataka, India. Tele: +91-8030938100/8200, Fax: +91-8027841600

Email: drvinitasahu@gmail.com

in unusual azaphilic addition to the tetrazine core. Only a few reports have documented the reactivity of tetrazines toward anionic heteroatom nucleophiles. In these cases, the reported yields are typically low and undesired side reactions are generally observed. Several routes were proposed to synthesize tetrazine derivatives including the reactions of hydrazine with nitriles [28], imino esters [29], thioamides [30], dithioamides, aroyl chloride

azines [31] etc.

Thus, buoyed from these aforementioned medicinal use and synthetic challenges associated with the six-membered tetrazines, tailoring of some new pharmacologically significant tetrazine compounds was endeavored for the sake of present investigation.

Scheme I. Synthetic pathway for 3-aryl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione derivatives (5a-l)

Table 1: Physical characteristic data for 3-aryl[1,2,3,5]tetrazino[5,4-a] benzimidazole-4(3H)-thiones (5a-l)

S. No.	Comp	M.P.	Yield	Analytical data Found (Calcd.) (%)		
		(°C)*	(%)	C (%)	H (%)	N (%)
1.	5a	135-137	72	60.14 (60.20)	3.17 (3.25)	24.96(25.07)
2.	5b	101-103	65	53.49 (53.59)	2.51 (2.57)	22.26(22.32)
3.	5c	122-123	70	53.52 (53.59)	2.52 (2.57)	22.25(22.32)
4.	5d	137-139	69	54.89 (54.96)	3.01 (3.07)	21.28(21.37)
5.	5e	120-122	73	54.91 (54.96)	3.03 (3.07)	21.32(21.37)
6.	5f	114-115	71	48.35 (48.40)	2.68 (2.71)	18.76(18.81)
7.	5g	131-132	75	58.19 (58.24)	3.51 (3.58)	22.57(22.64)
8.	5h	126-128	72	46.88 (46.94)	2.19 (2.25)	19.48(19.55)
9.	5i	133-135	71	46.89 (46.94)	2.21 (2.25)	19.51(19.55)
10.	5j	114-116	70	58.20 (58.24)	3.52 (3.58)	22.59(22.64)
11.	5k	101-103	69	59.33 (59.43)	4.96 (4.05)	21.59(21.66)
12.	51	142-143	65	59.71 (59.80)	3.42 (3.45)	22.63(21.79)

monitored by TLC, the solvent was removed in vacuum. The crude product was purified by column chromatography using CH₂Cl₂ as eluent to afford 5a-l in 65-75% yield. An overview of synthetic pathway is delineated in Scheme-I and physical characteristics of all the synthesized compounds are given in Table 1.

Experimental Details
All the chemicals used were of AR grade purity. IR spectra were recorded on Perkin Elmer model 377 spectrophotometer in KBr

hours to afford the desired

products in good yield. After

completion of reaction as

377 spectrophotometer in KBr pellets. IR frequencies were measured in cm⁻¹. ¹H NMR spectra were recorded in CDCl₃ solution in 5 mm tubes at 25 °C on a Bruker DRX-300 instrument (300 MHz FT NMR with low and high temperature facility -90 °C to +80 °C) with deuterium signal as the lock and TMS as internal standard. Chemical shifts were measured in ppm units. The FAB mass spectra were recorded on a JEOL SX102/ DA-6000 Mass Spectrometer using Argon/Xenon (6 kv, 10 mA) as the FAB gas. The ESI mass spectra were recorded on a Micromass Quattro II triple quadrapole mass spectrometer. The melting points were determined on an electric melting point apparatus (Biotech

Bombay, India) in open capillaries and are uncorrected. The purity of

all the synthesized compounds was ascertained by TLC resolution on silica gel-G (E Merck). Elemental analyses were performed on Elemental Vario, EL III Carlo Erba 1108.

Materials and Methods

Chemistry

Herein we report a benign and convenient synthesis of 3-aryl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thiones derivatives starting from initial reaction of o-phenylene diamine 1 with cyanogen bromide. The treatment was performed in aqueous medium in the presence of NaOH. A dark oily layer separated on cooling and crystallized on standing to afford buff white crystals of 2-amino benzimidazole 2, which further undergoes diazotization at 0 °C to afford azo derivative of 2-amino benzimidazole. Then the same solution was neutralized via saturated aqueous Na₂CO₃ to allow the formation of zwitter ion. These zwitter ions were further treated with aryl isothiocyanate derivatives in dichloromethane and stirred for 48

1. Synthesis of 3-Aryl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thiones (5a-l)

The derivatives were synthesized in the following sequential steps-

Step [A]: Synthesis of 1H-benzimidazol-2-amine (2)

In a round-bottomed flask cyanogen bromide (7.0 gm, 0.067 mol) was added in small portions, with shaking to a suspension of o-phenylene diamine (7.2 gm, 0.067 mol) in 80 ml water, considering the directions set for the preparations of benzimidazole. The solution was filtered after standing

overnight. Then sodium hydroxide (2.68 gm, 0.067 mol) dissolved in 6.0 ml water was added and the solution was evaporated on a steam bath. A dark oily layer separated on cooling and crystallized on standing to afford buff white crystals of 1H-benzimidazol-2-amine 2 in good yield.

IR (, cm⁻¹): 3460 (NH asym.), 3410 (NH sym.), 3070 (C-H, sp²), 1658 (C=N), 1605, 1590, 1420 (C----C, ring str.), 910, 870, 740 (sub. phenyl); ¹HNMR (ppm) : 4.8 (s, 2H, NH₂), 6.1 (s, 1H, NH), 7.14-7.28 (s, 4H, C_6H_4); FAB-MS m/z: M⁺+1 [134 (11%)]; Yield 81 %; m.p. 229-230 °C; Anal. Calcd for $C_7H_7N_3$: C, 63.14; H, 5.30; N, 31.56. Found: C, 63.11; H, 5.28; N, 31.51.

Step [B]: Synthesis of aryl isothiocynate derivatives (4a-l)

In a round-bottomed flask, placed in ice salt mixture and equipped with a mechanical stirrer and a separatory funnel, 45 ml of concentrated ammonia and 37 ml of pure CS2 was introduced slowly by maintaining the temperature 0.5 °C. The mixture was stirred and the various pertinent aniline derivatives (0.30 mol) were added slowly with stirring for further 30 minutes. Then the mixture was allowed to stand for half an hour. A heavy precipitate of dithiocarbamate separates. The salt was extracted by four extractions with 100 ml water and to the resulting solution 100 gm of lead nitrate in 200 ml of water was added to precipitate lead sulphide. This solution was steam distilled in to a receiver containing 5 ml of 0.5 M sulphuric acid. The organic layer was separated and dried and distilled under reduced pressure to afford the aryl isothiocyanate derivatives 4a-l. Some derivatives (4a, 4b, 4c, 4h, 4i, 4l) were synthesized using respective aniline derivatives by above procedure and remaining were procured.

Step [C]: Synthesis of 3-aryl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thiones (5a-l)

In a beaker 1H-benzimidazol-2-amine 2 (0.36 gm, 0.003 mol) was dissolved in conc. hydrochloric acid. In another beaker sodium nitrite (0.21 gm, 0.003 mol) was taken in 2.0 ml water. After cooling, the sodium nitrite solution was added to the solution of 1H-benzimidazol-2-amine.HCl by maintaining the temperature 0-5 °C to diazotize the amine. Then this solution was neutralized via saturated aqueous Na₂CO₃ (1.27 gm, 0.012 mol) to allow the formation of zwitter ion. Then, aryl isothiocyanate (0.002 mol) in 5ml of dichloromethane was added and mixture was stirred for 48 hours at room temperature. After completion of reaction as monitored by TLC, the solvent was removed in vacuum. The crude product was purified by column chromatography using CH₂Cl₂ as eluent to afford 5a-1 in good yields. The spectroanalytical data's of some representative compounds are given below:

a. 3-Phenyl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione (5a):

Prepared according to the general procedure as in experimental section.

IR (, cm⁻¹): 3000 (C-H, sp²), 1623 (C=C/ C=N),1578(-N=N),

1530, 1471,1375 (C-H bending), 1250 (-C=S), 1074(C-N str.), 945, 892, 824 (sub phenyl); 1 HNMR (ppm) : 7.10-7.34 (m, 9H, C_6H_5); Mass [m/z (% RA)]: M^+ [279.2 (20 %)]

b. 3-(4-Chlorophenyl)[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione (5b):

Prepared according to the general procedure as in experimental section.

IR (, cm⁻¹): 3030 (C-H, sp²), 1631 (C=C/C=N), 1551 (-N=N), 1525, 1470,1374 (C-H bending), 1251 (-C=S),1071(C-N str.), 941, 890, 814 (sub phenyl), 661 (C-Cl); ¹HNMR (ppm) : 6.97-6.99 (m, 4H, C_6H_4), 7.51-7.53 (dd, 2H, Ar-Ha), 7.58-7.60 (dd, 2H, Ar-Hb); Mass [m/z (% RA)]: 313 (M⁺, 21), 278 (M-Cl, 100), 202 (24), 77 (51).

c. 3-(4-Bromo-2-methylphenyl)[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione (5f):

Prepared according to the general procedure as in experimental section.

IR (, cm⁻¹): 3049 (C-H, sp²), 2981, 2880 (C-H, asym., sym.), 1642 (C=C/C=N), 1598 (-N=N), 1521 1460,1414 (C-H bending), 1263 (-C=S),1113 (C-N str.), 899, 860, 774 (sub phenyl), 596, 530 (C-Br); 1 HNMR (ppm) : 2.31 (s, 3H, -CH₃), 7.21-7.51 (m, 7H, C₆H₄); Mass [m/z (% RA)]:372(M⁺, 44), 358 (11), 357 (100), 293 (44), 279 (15), 208 (20), 158 (51), 140 (33).

d. 3-(4-Bromophenyl)[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione (5h):

Prepared according to the general procedure as in experimental section.

IR (, cm⁻¹): 3021 (C-H, sp²), 1638 (C=C/C=N), 1557 (-N=N), 1520 1457,1411 (C-H bending), 1254 (-C=S),1107 (C-N str.), 897,

854, 751 (sub phenyl), 581, 524 (C-Br); 1 HNMR (ppm) : 6.70-6.91 (m, 4H, C_6H_4) , 7.04-7.06 (dd, 2H, Ar-Ha), 7.26-7.36 (dd, 2H, Ar-Hb); Mass [m/z (% RA)]: 358 (M $^{+}$, 14), 279 (M-Br, 100), 202 (31), 77 (56).

Conclusion

Conclusively, a series of 3-aryl[1,2,3,5]tetrazino[5,4-a]benzimidazole-4(3H)-thione derivatives were synthesized in appreciable yields and characterized from all spectroanalytical methods. These derivatives have a wide number of usages in all the areas of medicinal and energetic chemistry, therefore they can be used as a lead compounds for such kind of studies.

Acknowledgement

Author would like to thanks to CDRI (Central Drug Research Institute), Lucknow for spectroanalytical facilities.

References

1. Devaraj NK, Weissleder R, Hilderbrand SA: Tetrazine-Based Cycloadditions: Application to Pretargeted Live Cell Imaging. Bioconjugate Chem. 2008,19: 2297.

- 2. Newell M, Ingram JD, Easun TL, Vickers SJ, Adams H, Ward MD, Thomas JA: Structure and Properties of Dinuclear [Ru^{II}([n]aneS₄) Complexes of 3,6-bis(2-pyridyl)-1,2,4,5-Tetrazine. Inorg. Chem. 2006, 45:821. (b) Remenyi C, Reviakine R, Kaupp M: Density functional study of EPR parameters and spin density distributions of dicopper(I) complexes with bridging azo and tetrazine radical anion ligands. J. Phys. Chem. A 2006, 110:4021.
- Gomez-Bengoa E, Helm MD, Plant A, Harrity JPA. The Participation of Alkynylboronates in Inverse Electron Demand [4 + 2] Cycloadditions: A Mechanistic Study. J. Am. Chem. Soc. 2007, 129:2691.
- Boger DL, Zhang M: Total synthesis of (+-)-cis and (+-)-trans-Trikentrin A: Diels-Alder reactions of heteroaromatic azadienes. J. Am. Chem. Soc. 1991, 113:4230.
- Wei T, Zhu W, Zhang X, Li YF, Xiao H: Molecular Design of 1,2,4,5-Tetrazine-Based High-Energy Density Materials. J. Phys. Chem. A 2009, 113:9404.
- Blackman ML, Royzen M, Fox JM: Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130:13518.
- Del Bene JE, Alkorta I, Elguero J: Probing 1J(C-F) and nJ(F-F) Spin-spin Coupling Constants for Fluorazines: An Ab Initio Theoretical Investigation. J. Phys. Chem. A 2010, 114:2637.
- Farago J, Novak Z, Schlosser G, Csampai A, Kotschy A: The azaphilic addition of organometallic reagents on tetrazines: scope and limitations. Tetrahedron 2004, 60:1991.
- 9. Zhu Y, Wu C, Li H, Zou X, Si X, Hu F, Yang H: Design, synthesis, and quantitative structure—activity relationship study of herbicidal analogues of pyrazolo[5,1-d][1,2,3,5] tetrazin-4(3H)-ones. J. Agric. Food Chem. 2007, 55:1364.
- 10. Novak Z, Kotschy A: The first cross-coupling reactions on tetrazines. Org. Lett. 2003, 5:3495. (b) Sammelson RE, Olmstead MM, Haddadin MJ, Kurth MJ: 1,2,4,5-Tetrazines as Oxidant and Reactant with DBU: An Unexpected Formation of a Novel Fused Tetraheterocyclic Azepine. J. Org. Chem. 2000, 65:9265.
- Jordan BJ, Pollier, MA, Miller LA, Tiernan C, Clavier G, Audebert P, Rotello VM: Redox-Modulated Recognition of Tetrazines Using Thioureas. Org. Lett. 2007, 9:2835.
- 12. Hamasaki A, Ducray R, Boger DL: Two novel 1,2,4,5-tetrazines that participate in inverse electron demand Diels-Alder reactions with an unexpected regioselectivity. *J. Org. Chem.* 2006, 71:185. (b) Hoogenboom R, Moore BC, Schubert US:

- Microwave-assisted synthesis of 3,6-di(2-pyridyl)pyridazines: Unexpected ketone and aldehyde cycloaddition reactions. J. Org. Chem. 2006, 71:4903.
- 13. Heppekausen J, Klapo"tke TM, Sproll SM: Synthesis of Functionalized Tetrazenes as Energetic Compounds. J. Org. Chem. 2009, 74:2460. (b) Domingo LR, Picher MT, Sa'ez JA: Toward an Understanding of the Unexpected Regioselective Hetero-Diels-Alder Reactions of Asymmetric Tetrazines with Electron-Rich Ethylenes: A DFT Study. J. Org. Chem. 2009, 74:2726.
- 14. Lodewyk MW, Kurth MJ, Tantillo DJ: Mechanisms for Formation of Diazocinones, Pyridazines, and Pyrazolines from Tetrazines—Oxyanion—Accelerated Pericyclic Cascades? J. Org. Chem. 2009, 74: 4804.
- 15. Bostai B, Novak Z, Benyei AC, Kotschy A: Quinoidal Tetrazines: Formation of a Fascinating Compound Class. Org. Lett. 2007, 9:3437.
- Vivat JF, Adams H, Harrity JPA: Ambient Temperature Nitrogen-Directed Difluoroalkynylborane Carboni –Lindsey Cycloaddition Reactions. Org. Lett. 2010, 12:160.
- 17. Bidan G, Divisia-Blohorn B, Lapkowski M, Kern JM, Sauvage JP: Electroactive films of polypyrroles containing complexing cavities preformed by entwining ligands on metallic centers. J. Am. Chem. Soc. 1992, 114:5986.
- 18. Lang JP, Kawaguchi H, Tatsumi K: Synthesis of a Heterobimetallic Ladder Polymer [(η⁵, C₅Me₅)WS₃Ag₂Br]_n. Inorg. Chem. 1997, 36:6447.
- 19. Audebert P, Saoud M, Miomandre F, Sadki S, Vernière MC, Hapiot P: Synthesis of new substituted tetrazines: electrochemical and spectroscopic properties. New J. Chem. 2004, 28:387.
- 20. Audebert P, Miomandre F, Sadki S, Clavier G: First example of an electroactive polymer issued from an oligothiophene substituted tetrazine. Electrochem. Commun. 2004, 6:144.
- 21. Chavez DE, Hiskey MA: 1,2,4,5-tetrazine based energetic materials. *J. Energ. Mater.* 1999, 17: 357.
- Chavez DE, Gilardi RD, Hiskey MA: 3,3'-Azobis(6-amino-1,2,4,5-tetrazine): A Novel High-Nitrogen Energetic Material. Angew. Chem. Int. Ed. 2000, 39:1791.
- 23. Chavez DE, Hiskey MA: Synthesis of the bi-heterocyclic parent ring system 1,2,4-triazolo[4,3-b] [1,2,4,5]tetrazine and some 3,6-disubstituted derivatives. J. Heterocycl. Chem. 1998, 35:1329.
- 24. Boger DL, Sakya SM: Inverse electron demand Diels-Alder reactions of 3,6-bis(methylthio)-1,2,4,5-tetrazine. 1,2-Diazine introduction and direct implementation of a divergent 1,2,4,5-

- tetrazine .fwdarw. 1,2-diazine .fwdarw. benzene (indoline/indole) Diels-Alder strategy. J. Org. Chem. 1988, 53:1415.
- Hu WX, Rao GW, Sun YQ: Synthesis and antitumor activity of s-tetrazine derivatives. Bioorg. Med. Chem. Lett. 2004, 14:1177.
- 26. Clark AS, Deans B, Stevens MFG, Tisdale MJ, Wheelhouse RT, Denny BJ, Hartley JA: Antitumor Imidazotetrazines. 32.1 Synthesis of Novel Imidazotetrazinones and Related Bicyclic Heterocycles To Probe the Mode of Action of the Antitumor Drug Temozolomide. J. Med. Chem. 1996, 38:1493. (b) Denny BJ, Wheelhouse RT, Stevens MFG, Tsang LLH, Slack JA: NMR and Molecular Modeling Investigation of the Mechanism of Activation of the Antitumor Drug Temozolomide and Its Interaction with DNA. Biochemistry 1994, 33:9045.
- 27. Almerico AM, Mingoia F, Diana P, Barraja P, Lauria A, Montalbano A, Cirrincione G, Dattolo G: 1-Methyl-3H-pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-ones. Design, synthesis, and biological activity of new antitumor agents. *J. Med. Chem.* 2005, 48:2859.
- 28. Yates P, Merez O: Formation of dihydro-tetrazines by the reaction of **a**-diazo ketones with bases. *Tetrahedron lett.* 1967,1:77.
- 29. Pinner A: Ueber die Einwirkung von Hydrazin auf Imidoäther. Ann. Chem. 1897, 297: 221.
- 30. Neilson DG, Roger R, Heatlie JWM, Newlands LR: Chemistry of amidrazones. Chem. Rev. 1970,70:151.
- 31. Pilgram K, Skiles RD: Unsymmetrically 3,6-disubstituted stetrazines. Synthesis of 3-aryl-6-(perfluoroalkyl)-1,2,4,5-tetrazines and 1,2-dihydro derivatives. J.Org. Chem. 1976,41:3392.

Note: Vedic Research International, Vedic Research Inc is not responsible for any data in the present article including, but not limited to, writeup, figures, tables. If you have any questions, directly contact authors.

Visit us @ www.vedicjournals.com : DOI: http://dx.doi.org/10.14259/bmc.v1i2.74

Dr. Vinita Sahu is working as an assistant professor in Alliance College of Engineering and Design (ACED) Alliance University Bangalore, India. She has obtained her Ph.D. degree from Devi Ahilya University, Indore in year 2011 as a CSIR Fellow. She has been awarded the **Best Science Research** award from MPCST, Bhopal for her excellent research work and publications. She has published a more than **34 articles** in international journals with high impact factors and in various conferences as well. She is an **international reviewer** of reputed journals like, springer link, pharmaceutical biology, Taylor and Francis etc. Her research areas include synthesis, heterocyclic chemistry, computational chemistry, electrochemistry and drug designing including molecular simulation.