

Vedic Research International Phytomedicine

eISSN 2330-0280

JOURNAL HOME PAGE AT WWW.VEDICJOURNALS.COM

RESEARCH ARTICLE

DOI: http://dx.doi.org/10.14259/pm.v2i3.133

Phytochemical Constituents in Hexane Fraction of Costus afer Ker Gawl. Stem

God'swill Nduka Anyasor^{1*}, Funmilayo D Onajobi¹, Odutola Osilesi¹, Olugbenga O Adebawo¹²

¹Department of Biochemistry, Benjamin S. Carson School of Medicine, College of Health and Medical Sciences, Babcock University, Ilisan Remo, Ogun State, P.M.B. 21244 Ikeja, Lagos, Nigeria.

²Department of Biochemistry, Faculty of Basic Medical Sciences, O.A.C.H.S., Olabisi Onabanjo University, Remo Campus, Ikenne, Ogun State, Nigeria.

Article Info: Received: May 19th, 2014; Accepted: May 23rd, 2014

ABSTRACT

In view of the high demands for alternative medicine in developing countries and the dearth of valid scientific data on herbal remedies used in these countries. This study was designed to identify the bioactive compounds present in hexane fraction of *Costus afer* ker Gawl stem, an indigenous medicinal African plant used as therapy in the treatment of chronic inflammatory disease such as rheumatoid arthritis. Phytochemical evaluation and gas chromatography-mass spectrometry (GC/MS) analytical methods were carried out. The mass spectra of the identified compounds were compared with those of the National Institute of Standards and Technology database library. Results showed the presence of alkaloids, diterpenes, triterpenes, phytosterol, phenol, phlobatannins and tannins while GC/MS data detected 16 compounds including benzofuran 2,3-dihydro and oleic acid. These identified compounds in hexane fractions of *C. afer* stem may explain the folkloric use of *C. afer* plant stem extract in the treatment of chronic inflammatory diseases.

Keywords: Costus afer, GC/MS, herbal, stem, phytochemicals

Introduction

In developing countries, herbal medicine remains the main stay of the people both for prophylactic as well as therapeutic purposes, especially in the area of primary health care delivery [1]. The use of herbal medicines in the world far exceeds that of the conventional drugs by the ratio of 2 to 3 [2]. Traditional medical practitioners generally use unpurified plant extracts either from the stem, leaves, roots, rhizomes or the whole plant in treatment of various ailments [3]. It is generally claimed that the chemical constituents present in these extracts elicit their biological effect synergistically, so that the effect of the whole

*Corresponding Author

Anyasor God'swill Nduka

Department of Biochemistry, Benjamin S. Carson School of Medicine, College of Health and Medical Sciences, Babcock University, Ilisan Remo, Ogun State, P.M.B. 21244 Ikeja, Lagos, Nigeria.

Mobile: +234 7034618323

Email: anyasorgodswill@yahoo.co.uk, anyasorg@babcock.edu.ng

herb is greater than the effect of the individual compounds [4]. However, many of these chemical constituents as well as their mode of action have not yet been well documented to enhance their acceptability in main stream medicine [4].

Costus afer Ker Gawl. (Costaceae) is an indigenous West African medicinal plant which belongs to one of 150 species of stout, perennial, and rhizomatous herbs. It grows in moist or shady farm lands and river banks [5]. C. afer is commonly called gingerlily or bush cane and in Nigeria, it is called "Ireke omode" in Yoruba, while it is called "Okpete" in Igbo, "Kakizawa" in Hausa, "Mbritem" in Efik. Ghanaian calls it "Akan asante" while Anglophone Cameroon calls it "Monkey sugar cane" [6]. C. afer stem extract has been used as medicinal herb especially in the treatment of inflammation, rheumatoid arthritis, cough, sore throat, colic, hemorrhoids and epileptic attack. It can also serve as laxative, diuretic, and an antidote for snake poison [5-7]. Aqueous and methanol extracts of C. afer stem exhibited antioxidant activity in vitro [8].

Anyasor et al, 2014

The majority of the chemical compounds identified in *C. afer* plant are from the rhizome, which have been reported to contain saponins aferosides A – C, dioscin and paryphyllin C, and it also contains flavonoid glycoside kaempferol 3-O-α-L-rhamnopyranoside [9]. Sesquilavandulyl acetate, β-carophyllene, Z, E-farnesol have also been identified in the essential oil of *C. afer* leaves [10]. To the best of our knowledge no attempts have been made to identify the chemical compounds present in hexane fractions of *C. afer* stem using gas chromatography-mass spectrometry methods. Therefore, this study was aimed to identify the bioactive compounds present in hexane fractions of *C. afer* stem with the objective to proffer scientific rationale for the ethno-medical use of *C. afer* stem in the treatment of inflammatory diseases.

Materials and Methods

Collection of Plant Materials

C. afer plant was obtained from a farm land at Irolu in Ikenne Local Government Area, Ogun State, Nigeria. The plant was identified and authenticated by Professor A.O. Denton, a crop scientist in the Department of Agronomy and Landscape Design, School of Agriculture and Industrial Technology, Babcock University, Ilisan-Remo, Ogun State, Nigeria. A voucher sample with number of FHI-108001 has been deposited at Forestry Herbarium Ibadan (FHI).

Plant Processing, Extraction and Solvent Partitioning

The leaves and roots were plucked out of the stem and discarded. The chopped stem pitches were air-dried under room temperature and pulverized using mechanical grinder. Three hundred grams of powdered stem samples were extracted using 1800 ml of 70% methanol with intermittent shaking for 48 h. The extract was filtered using Whatman No.1 filter paper and the filtrate was subsequently concentrated using rotary evaporator at 30 °C (Buchi Rotavapor RE; Switzerland). The concentrates were reconstituted with distilled water in a ratio of 1:2 (concentrate: distilled water) and partitioned using *n*-hexane. The hexane stem fraction obtained was concentrated in a rotary evaporator at 30 °C. The hexane stem fraction was then subjected to phytochemical evaluation and gas chromatographymass spectrometry analytical methods.

Phytochemical Evaluation

Phytochemical evaluation was performed on the isolated hexane fraction of *C. afer* stem using standard procedures to identify chemical constituents as described by Trease and Evans [11], Harborne [12] and Sofowora [13]. The procedures were as follows:

Screening for Alkaloids

Hexane stem fraction of *C. afer* was dissolved individually in 1% HCl on steam bath and filtered while hot. The filtrate was used to test for the presence of alkaloids according to:

Mayer's Test

Filtrate obtained was treated with Mayer's reagent (potassium

VRI Phytomedicine 2014; Volume 2 (Issue 3): Pages 66-72

mercuric iodide). The formation of cream colored precipitate indicated the presence of alkaloids.

Wagner's Test

Filtrate was treated with Wagner's reagent (Iodine in potassium iodide). The formation of brown / reddish brown precipitate indicated the presence of alkaloids.

Screening for Glycosides

Hexane stem fraction was hydrolyzed with 1% HCl and then subjected to test for glycosides using:

Modified Borntrager's Test

Hydrolysed fraction was treated with ferric chloride solution and immersed in boiling water for about 5 min. The mixture was cooled and shaken with an equal volume of benzene. The benzene layer was separated and treated with ammonia solution. The formation of rose-pink color in the ammoniacal layer indicated the presence of anthranol glycosides.

Legal Test

Hydrolysed fraction was treated with sodium nitroprusside in pyridine and methanolic alkali. Formation of pink to blood red color indicated the presence of cardiac glycosides.

Liebermann Burchard's Test

Hydrolysed fraction was treated with chloroform and a few drops of acetic anhydride, boiled and cooled. Concentrated sulphuric acid was added carefully along the sides of the test tube. The formation of brown ring at the junction indicated the presence of steroidal glycosides.

Screening for Saponins

Foam Test

The hexane stem fraction was diluted with distilled water to 20 ml and this was shaken in a graduated cylinder for 15 min. formation of 1 cm layer of foam indicated the presence of saponins.

Screening for Triterpenes and Phytosterol Salkowski Test

The hexane stem fraction was dissolved in chloroform and subsequently treated with a few drops of concentrated sulphuric acid, shaken and allowed to stand. Appearance of golden yellow color indicated the presence of triterpenes and steroids.

Libermann Burchard's Test

The hexane stem fraction was dissolved in chloroform. To the chloroform solution few drops of acetic anhydride was added boiled and cooled. Concentrated sulphuric acid was added carefully along the sides of the test tubes. Formation of brown ring at the junction indicated the presence of phytosterols.

Screening for Fixed Oils

Stain Test

The hexane stem fraction in sample quantity was pressed between two filter papers. An oily stain on filter paper

Anyasor et al, 2014

indicated the presence of fixed oils and fats.

Screening for Resins

Acetone-water Test

The hexane stem fraction was dissolved in acetone and filtered. Small amount of water was added to acetone solution and shaken. Appearance of turbidity indicated the presence of resins.

Screening for Phenols

Ferric chloride Test

The hexane stem fraction was treated with few drops of ferric chloride solution. Formation of bluish black color indicated the presence of phenols.

Screening for Flavonoids

Alkaline reagent Test

The hexane stem fraction was treated with few drops of sodium hydroxide solution. Formation of intense yellow color, which becomes colorless on addition of diluted HCl, indicated the presence of flavonoids.

Lead acetate Test

The hexane stem fraction was treated with few drops of lead acetate solution. Formation of yellow color precipitate indicated the presence of flavonoids.

Shinoda Test

To the alcoholic solution of fractions, a few fragment of magnesium ribbon and concentrated HCl were added. Appearance of magenta color after few minutes indicated the presence of flavonoids.

Screening for Diterpenes

Copper acetate Test

The hexane stem fraction was treated with few drops of copper acetate solution. Formation of emerald green color indicated the presence of diterpenes.

Screening for Triterpenoids

Tshugajen Test

The hexane stem fraction was treated with chloroform and filtered. Excess of acetyl chloride and a pinch of zinc chloride were added to the treated fractions, kept aside for some time till the reaction was completed and then warmed on water bath. Appearance of eosin red color indicated the presence of triterpenes.

Screening for tannins

The hexane stem fraction was dissolved in water, after which the solution was clarified by filtration. 10% ferric chloride solution was added to the resultant filtrate. The appearance of a bluish black or brownish green or dark green color will indicated the presence of tannins.

Screening for anthraquinones

The hexane stem fraction was shaken with 10 ml of benzene and filtered. Ammonia solution (10%) was added to the filtrates and

VRI Phytomedicine 2014; Volume 2 (Issue 3): Pages 66-72

the mixture shaken. The formation of a pink, red or violet color on the ammoniacal phase indicated the presence of anthraquinones.

Screening for phlobatannins

A few drops of 1% HCl was added to 1 ml of hexane stem fraction separately and boiled. A red precipitation indicated the presence of phlobatannins.

Gas Chromatography - Mass Spectrometry (GC/MS) Analysis

The hexane fractions of C. afer stem was subjected to GC/MS analysis which was carried out at the Department of Chemistry, University of Lagos, Akoka. The GC/MS Specification was: Agilent Technologies model 7890A GC-MS, MSD=5975C (detector) Agilent Technologies, Injector: 7683B series, initial temperature=100 °C held for 2 min, final temperature=270°C at the rate of 10 °C /min, 1 μl of 0.2 g/ml fraction was injected. Temperature of heater was 250 °C, pressure was 3.2652 psi, mode type splitless, column type (HP5MS: 30 $M\times320~\mu M\times0.25~\mu M$) and carrier gas (helium, 99.9999% purity, flow rate =1.4963 ml/min; average velocity = 45.618 cm/sec). The constituent compounds were determined by comparing the retention times and mass spectra of the authentic samples obtained by GC with the mass spectra from the National Institute of Standards and Technology (NIST) Version 2.0 MS database library.

Results and Discussion

The phytochemical analysis revealed the presence of alkaloids, diterpenes, triterpenes, phytosterols, phenols, phlobatannins and tannins (Table 1). Previous studies have shown that the medicinal value of plant extracts could be attributed to some plant phytochemicals known to inhibit or terminate proinflammatory mediators or deleterious chain reactions triggered by free radicals or reactive oxygen species [14,15]. Researches have shown that alkaloids possess antiinflammatory, antimicrobial, antifungal, antihelminthics, antimalarial and antidepressant activities [13,16,17]. Plant steroids and phlobatannins have been shown to have similar pharmacology attributes compared to animal steroids due to their structural relationship [18]. Cardiac glycosides inhibit the sodium ion/potassium ion pump which is important in the treatment of congestive heart failure and cardiac arrhythmia [19]. It can be deduced that the folkloric use of C. afer stem extract in the treatment of arthritis, rheumatism, sore throat, diarrhea, antihelminthics, hemorrhage and wound healing might be due to presence of these phytochemicals.

The GC-MS spectrum of the hexane fraction of *C. afer* stem is shown in Figure 1. The compounds identified in the spectrum together with their relative abundance are shown in Table 2. A coumaran, benzofuran 2,3-dihydro was detected in hexane stem fraction of *C. afer* and previous report had shown that it possesses anti-inflammatory, antidiarrhoeal and anti-helminthic activities [20,21]. Also, hexadecanoic acid, methyl ester and n-hexadecanoic acid detected had been reported to

Table 1: Phytochemical evaluation of hexane fraction of Costus afer stem

Chemical constituents	Chemical Test	Hexane stem Fraction	
ATTENDED	Meyer's test	+	
Alkaloids	Wagner's test	+	
	Borntrager's test	:-	
Glycosides	Lieberman Buchard's test	-	
	Legal's test	100	
Saponins	Foam's test	-	
	Salkowski's test	+	
Triterpenes and Phytosterols	Lieberman Buchard's test	-	
Fixed oil	Stain test	+	
Resins	Acetone-water test	+	
Phenols	Ferric chloride tests	+	
	Alkaline test	-	
Flavonoid	Lead acetate test		
	Shinoda test	-	
Anthraquinone	Anthraquinone test		
Phlobatannins	Phlobatannins test	+	
Tannins	Tannin test	+	
Diterpernes	Copper acetate test	+	
	Tshugajen's test	+	

⁺ indicates presence; - indicates absence

Figure 1: Photograph showing the arial view of C. afer Ker Gawl

antioxidant, hypocholesterolemic, 5-alpha reductase inhibitor, nematicide, pesticide and antiandrogenic [22,23]. Similarly, cis-vaccenic acids and oleic acid detected are potent antiinflammatory and antioxidant compounds [21,22]. Tritetracontane and octacosane detected in hexane stem fraction of C. afer had been reported to exhibit insecticidal activity [21]. 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester is known for its plasticizer property [21]. Furthermore, 9,12-octadecadienoic acid, methyl, 11-octadecenoic acid, methyl ester, octadecanoic acid, methyl ester, tricosane, tetracosane, 9-octadecanal (Z), hexacosane and heptadecane were also detected in

possess anti-inflammatory,

Table 2: GC-MS analysis of C. afer hexane stem fraction

Table 2: GCMS analysis of C. afer hexane stem fraction							
S/N	PEAK NO.	RETENTION TIME	LIBRARY ID	QUALITY	BIOACTIVITY		
1	4	5.198	Benzofuran 2,3-dihydro (Coumaran)	74	Anti-inflammatory, antihelminthics, anti-diarrhoel [20,21]		
2	5	12.717	Hexadecanoic acid, methyl ester	99	Antibacterial,antifungal Anti-inflammatory Antioxidant [22,23]		
33	6	13.072	n-Hexadecanoic acid (palmitic acid)	99	Anti-inflammatory Antioxidant Hypocholesterolemic Flavour Nematicide Pesticide Antiandrogenic [22,23]		
4	8	14.336	9,12-Octadecadienoic acid, methyl	99	No bioactivity reported		
5	9	14.388	11-Octadecenoic acid, methyl ester	99	No bioactivity reported		
6	10	14.617	Octadecanoic acid, methyl ester (methyl stearate)	99	Raw material, emulsifier or oiling agent for foods No bioactivity (Duke, 2013)		
7	11	14.823	Cis-Vaccenic acid	99	Anti-inflammatory Antioxidant [21,22]		
8	13	15.252	Oleic acid	87	Anti-inflammatory Antioxidant [21,22]		
9	15	16.110	Tricosane	89	No bioactivity reported		
10	16	16.934	Tetracosane	98	No bioactivity reported		
11	17	17.524	9-Octadecanal (Z)	94	No bioactivity reported		
12	19	17.730	Tritetracontane	90	Insecticidal [21]		
13	21	18.153	1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester (phthalate)	91	Plasticizer [21]		
14	22	18.491	Hexacosane	95	No bioactivity reported		
15	23	19.234	Heptadecane	94	No bioactivity reported		
16	27	21.014	Octacosane	96	Insecticidal or mosquitocidal [21]		

the hexane stem fraction, however, there has been no reported biological activity.

Conclusion

The hexane fraction of *C. afer* stem contains phytochemicals of biological and medicinal value. These identified bioactive compounds may account for the prophylactic or therapeutic uses of *C. afer* stem extract against chronic inflammatory disease such as rheumatoid arthritis by folklores. Furthermore, *n*-hexane fraction of *C. afer* stem could serve as a potential source of

biopharmaceutical agents in the drug discovery process. It is recommended that further studies be carried out on the detected compounds with no known biological activity to unravel their biological activities as they might be contributory to the ethno-medical efficacy of *C. afer* stem extract in treatment of inflammatory disorders.

Acknowledgement

We express sincere gratitude to Research and International Cooperation, Babcock University for providing the grant [BU/

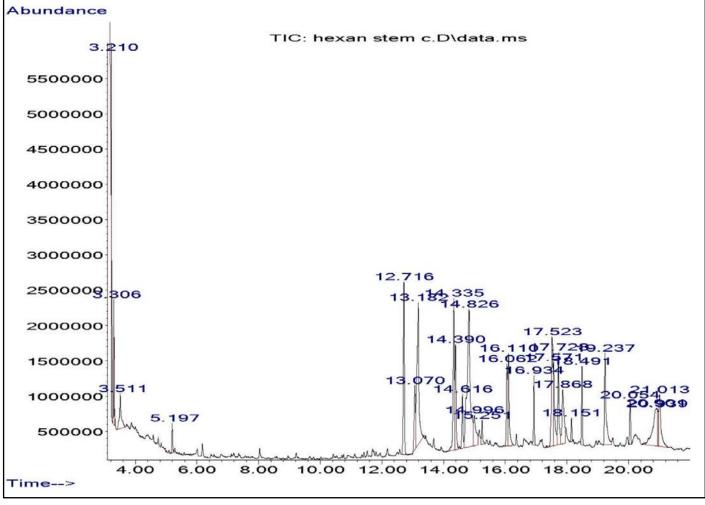


Figure 2: GC/MS chromatogram of hexane fraction of C. afer stem

RIC/003] that facilitated the completion of this research. We also thank Anyasor Chiamaka O. for the technical assistance rendered during the course of this research.

References

- 1. Kamboj VP: Herbal medicine. Current Science 2000, 78: 35-39.
- 2. Mwangi JW, Mungai NN, Thoithi GN, Kibwage IO: **Traditional herbal medicine in national health care in Kenya.** East Central African Journal of Pharmaceutical Sciences 2005, 8: 22-26.
- 3. Beg S, Suryakanta S, Hameed H, Abul Barkat M, Sarfaraz H: Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives. *Pharmacognosy Review* 2011, 5: 120-137.
- Sanjoy KP, Yogeshwer S: Herbal medicine: Current status and the future. Asian Pacific Journal of Cancer Prevention 2003, 4: 281-288.
- Aweke G: Costus afer Ker Gawl. [Internet] Record from PROTA4U. Schmelzer,G. & Gurib-Fakim, A. (Editors). PROTA (Plant Resources of Tropical Africa/Ressourcesvéétales de Afrique tropicale), Wageningen, Netherlands. 2007. http:// www.prota4u.org/search.asp>. (Accessed on May 18, 2014).

- Iwu MM: Handbook of African medicinal plants. Florida: CRC Press: 1993.
- Omokhua GE: Medicinal and Socio-Cultural Importance of Costus afer (Ker Grawl) in Nigeria . African Research Review 2011, 5: 282-287
- Anyasor GN, Ogunwenmo KO, Oyelana A, Akpofunure BE: Phytochemical constituents and antioxidant activities of aqueous and methanol stem extracts of Costus afer Ker Gawl. (Costaceae). African Journal of Biotechnology 2010, 9: 4880-4884.
- Lin RC, Hanquet B, Lacaille-Dubois MA: Aferoside A, a steroidal saponin from Costus afer. Phytochemistry 1996, 43: 665-668.
- Taiwo AO, Bolanle AA: The leaf essential oil of Custos afer ker Gawl from Nigeria . Flavour Fragrance Journal 2003, 18: 309-311.
- 11. Trease GE, Evans WC: Pharmacognosy: a physician's guide to herbal medicine. edn 13th. London:Bailliere Tindall; 1989.
- 12. Harbone JB: Phytochemical Methods. A guide to modern technique of plant analysis. London: Chapman and Hall Ltd; 1973.
- Sofowora A: Medicinal plants and traditional medicine in Africa. edn 2nd. Ibadan: Spectrum Books Ltd; 1993.
- 14. Mark EO, Nanditha G, Nair AB, Gjumrakch A, Prakash RV: The role of polyphenolic antioxidants in health, disease, and aging. *Rejuvanation Research* 2010, 13: 1-13.

- 15. Ukpabi CF, Agbafor KN, Ndukwe OK, Agwu A, Nwachukwu SN: Phytochemicalcomposition of Costus afer extract and Its alleviation of carbon tetrachloride-induced hepatic oxidative stress and toxicity. International Journal of Modern Botany 2012, 2:120-126.
- Okwu DE, Okwu ME: Chemical composition of Spondias mombin Linn. plants parts. Journal of Sustainable Agricuture and Environment 2004, 6: 140-147.
- 17. Gurib-Fakim A: Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular Aspect of Medicine 2006, 27:1-93.
- Okwu DE: Phytochemicals and vitamin content of indigeneous spices of South Eastern Nigeria. Journal of Sustainable Agricuture and Environment 2004, 6: 30-34.
- 19. Schneider G, Wolfling J: Synthetic Cardenolides and related compounds. Current Organic Chemistry 2004, 8:14.

- Salem AZM, Salem MZM, Gonzalez-Ronquillo M, Camacho LM, Cipriano M: Major chemical constituents of Leucaena leucocephala and Salix babylonica leaf extracts. *Journal of Tropical Agriculture* 2011, 49:95-98.
- 21. Duke JA: *Phytochemical and Ethnobotanical Databases*, 2013 http://search.cm/results.aspx? dr duke's phytochemical ethnobotanical databases (Accessed on December 12, 2013).
- Henry GE, Momin RA, Nair, MG, Dewitt DL: Antioxidant and cyclooxygenase activities of fatty acids Found in food. Journal of Agriculture and Food Chemistry 2002, 50: 2231-2234.
- 23. Praveen KP, Kumaravel S, Lalitha C: Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. African Journal of Biochemical Research 2010, 4: 191-390.

<u>Note:</u> VRI Press, Vedic Research Inc. is not responsible for any data in the present article including, but not limited to, writeup, figures, tables. If you have any questions, directly contact authors.

Visit us @ www.vedicjournals.com: DOI: http://dx.doi.org/10.14259/pm.v2i3.133

Copyright © 2013-2014 VRI Press, USA. All rights reserved.

Anyasor, G.N. Ph.D.

Dr. God'swill N Anyasor is a researcher and lecturer in the Department of Biochemistry, Babcock University, Ilishan Remo, Ogun State, Nigeria. He is currently researching into the biological effects of natural products from indigenous plant sources. He is also interested in discovering and elucidating the structures of novel bioactive compounds with anti-inflammatory, antioxidant, anticancer and anti-apoptotic properties.

Professor Onajobi, Funmilayo D. is a lecturer of Lipid and Membrane Biochemistry in the Department of Biochemistry, Babcock University, Ilishan Remo, Ogun State, Nigeria.

Professor Osilesi, Odutola is a lecturer of Nutritional Biochemistry in the Department of Biochemistry, Babcock University, Ilishan Remo, Ogun State, Nigeria.

Professor Adebawo, Olugbenga is a lecturer of Nutritional Biochemistry and Biotechnology in the Department of Biochemistry, Faculty of Basic Medical Sciences, O.A.C.H.S., Olabisi Onabanjo University, Remo Campus, Ikenne, Ogun State, Nigeria.

