

VEDIC RESEARCH INTERNATIONAL nedicine

JOURNAL HOME PAGE AT WWW.VEDICJOURNALS.COM

Research Article

DOI: http://dx.doi.org/10.14259/pm.v1i3.50

Total Phenolic Composition, Antibacterial and Antioxidant Activities of Fagara heitzii Aubr & Pellegr Medicinal Plant of Gabon

LOUIS-CLÉMENT ENGONGA OBAME^{1,2,3*}, ANDZI BARHÉ TIMOLÉON¹, ONDO JOSEPH-PRIVAT^{1,3}, MEWONO LUDOVIC⁴, NDONG ATOME GUY ROGER^{1,3}, ABDOUL-LATIF FATOUMA^{2,5}, IMAËL HENRI NESTOR²

¹Laboratoires de Substances Naturelles et de Synthèses Organométalliques (LASNSOM), Université des Sciences et Techniques de Masuku B.P. 943, Franceville, Gabon.

²Laboratoire BAEBIB, UFR-SVT, Université de Ouagadougou, 09 BP 848 Ouagadougou, Burkina Faso.

³Laboratoires de Recherche en Biochimie (LAREBIO), Université des Sciences et Techniques de Masuku B.P. 769, Franceville,

⁴Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Ecole Normale Supérieure (ENS) Libreville BP 17009 Libreville, Gabon.

⁵Laboratoire de Biologie, Université de Djibouti, BP 1904 Djibouti, République de Djibouti.

Article Info: Received: August 1st, 2013; Accepted: August 7th, 2013

ABSTRACT

Fagara heitzii Aubr. & Pellegr is a shrub indigenous to secondary forest. The plant is widely used for its various pharmacological properties. The powdered plant samples were analyzed for their phytochemical screening using standard laboratory methods. The total phenols, proanthocyanidines and antioxidant activities were evaluated with methods of the Folin-Ciocalteu, HCl-butanol hydrolysis and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The plant is rich in phenolic compounds with tannins being the most abundant compounds in the methanolic and aqueous extracts while flavonoids and proanthocyanidins are abundant in methanol and chloroform extracts. Overall, we found that the extracts tested reduced the concentration of the free radical. The oxidation of linoleic acid was weakly inhibited by methanol and water extracts of plant (48.8 and 39.4 % ± 0.05 of reduction). In addition, the F. heitzii extracts had a good antimicrobial activity against tested microorganisms. In the agar-well diffusion assay, the extracts are active on both Gram positive and negative bacteria. The broth microdilution assay gave minimal inhibitory concentration values ranging from 16 to 400 µg/ml. Our results suggest that Fagara heitzii has both antioxidant and antibacterial activities.

Keywords: Fagara heitzii, Antioxidant, Antimicrobial, Antiboacterial, Phenolic, Medicinal plants

INTRODUCTION

Fagara heitzii Aubr. & Pellegr., is a large tree of secondary forest typically originated in the tropicals and subtropicals areas like in Africa. There is a variety of thorny tree with yellow-brown wood. The bark is toxic and it is used as a fish poison in many regions

*Corresponding Author

Obame Engonga Louis-Clément

B.P. 913 USTM Franceville, Gabon/ BP 769 USTM Franceville

Phone: (+241) 06862376/ (+241) 03059131; Fax: (+241) 67 16 60 Email: obamengonga@gmail.com, yacth58@hotmail.com

in Africa [1]. Rutaceae are rich in photosensitizing furanocoumarins, which are responsible for phototoxic events. Skin contact with a plant of the citrus family or one of its essential oils, cosmetics, in the presence of sunlight causes a rash, often followed by the formation of vesicles [2]. Subsequently, one can observe hyperpigmentation of the affected area due to stimulation of melanogenesis [3].

Fagara heitzii is used in decoration and used for woodworking and light for carcasses and shelves of furniture, furnishings for shops, offices and carpentry. The medicinal use of Fagara heitzii relies on the treatment of treat rheumatism, aches and heart palpitations, toothaches and disinfection of wounds [1]. More

recently, phase II clinical trial fagaricine is effective against bacteria, fungi and viruses [4]. Research by Dr. ETO led to a promising discovery of the F-532 (Fagaricine 532), which is an antiviral, antibacterial and antifungal effective. The young plant of *Fagara heitzii* shoots pounded and macerated, one draws a sample whose main component is the nitidine, already well known active substance. Synergistic effects between the nitidine and its various derivatives, present in the extract obtained, give it a very interesting level of activity. It would include an anti-reverse transcriptase, classical mode of action of antivirals. Nontoxic, this remedy is now in Phase III development. The first clinical studies, shown marked decreases in viral load in subjects treated are more than encouraging. An injectable form of the drug already exists in the United States [4].

The present study reports results of a detailed analysis of the antioxidant and antibacterial activities of aqueous and methanolic extracts of *Fagara heitzii*. To the best of our knowledge, such investigation has not been conducted yet on *F. heitzii* species from Gabon.

MATERIALS AND METHODS

Plant materials

The leaves of *Fagara heitzii* were selected according to their traditional uses. The plant samples were collected in Oyem (Northern of Gabon) in September 2012. Identification of the species was carried out at the National Herbarium of IPHAMETRA, Libreville (Gabon). Voucher specimens have been deposited in the Herbarium of IPHAMETRA and at Laboratoire de Substances Naturelles (LASUNA) at the Department of Chemistry-Biochemistry, faculty of sciences of USTM in Franceville.

Compounds extraction and qualitative analysis

The harvested samples were dried in the laboratory at room temperature and subsequently pulverized with a mechanical crusher. For aqueous extraction, 50 g of powder were percolated for 24 h in 300 ml water. After cooling at room temperature, the extract was filtred and lyophilised. For methanolic extraction, 50 g of powder were percolate in 500 ml of methanol for 24 h. For chloroform extract, 50 g of powder were percolated with 500 ml of chloroform for 24 h. Methanol and chloroform were evaporated with a rotary evaporator. The extract was then washed with hexane in order to eliminate the chlorophyll and other pigments. The solvent were evaporated and the extract lyophilised.

Stock solutions were prepared by dissolving lyophilized extracts in distilled water for aqueous extracts and in a of dimethyl sulfoxide (DMSO) for chloroform and methanol extracts. The final concentration of DMSO was set at 0.5 % after a two-fold dilution of the extracts from 2000 to 400 μ g/ml.

Each extract was then tested for the presence of saponosids, reducing compounds, phenolic compounds, flavonoids, proanthocyanidins, sterols, triterpens, carotenoids, tannins and

anthracenosids as described elsewhere [5].

Phenolic content: The Folin-Ciocalteu method was used to measure total amount of phenolic content [6]. The original assay was adapted to a microtiter 96-wells plate system [7] and gallic acid (3, 4, 5-trihydroxybenzoic acid) was used as standard. To 20 μ l of beverage 80 μ l of Folin-Ciocalteu reagent were added. After 5 min of incubation at room temperature (20°C), 80 μ l of 20 % (w/v) sodium carbonate solution was added and incubated. The mix was then incubated for 30 min and the absorbances read at 760 nm. All tests were carried out in triplicate and results were expressed as gallic acid equivalent (GAE).

Tannins: The reference method of european communauty was used to measure total amount of tannins (1994) [8].

Proanthocyanidins (PAs) were quantified with an adaptation to a 96-well plate assay [9, 10]. The method consists on the hydrolysis of proanthocyanidins in a hot acid-alcohol medium into anthocyanidins. This method allows taking into account all the units of flavans-3-ols constituting the polymers [11]. The assay is performed by mixing 50 μ l of the extract with 700 μ l of 30 % HCl-butanol solution (v/v). The mixture was put in tightly closed 1.5 ml Eppendorf tube and vortexed for 1 min. Subsequently, the tube was heated at 100°C for 2 h and after cooling, 200 μ l aliquots were put in triplicate into a 96-well plate and the absorbances were read at 550 nm. Apple procyanidins (DP \approx 7.4) treated as aforementioned were used as a standard. Results were expressed as apple procyanidins equivalent (APE).

Flavonoids: The Dowd method was used to measure total amount of flavonoids [12]. The original assay was adapted to a microtiter 96-wells plate system [7]. Quercetin was used as standard. 100 μ l of 2 % AlCl₃ in methanol were added to 100 μ l of plant extract. After 10 min of incubation at room temperature (20°C), the absorbances were read at 415 nm. All tests were carried out in triplicate and results were expressed as gercetin equivalent (QE).

Microorganisms, antibiotics and media

Commercially available antibiotics discs, Penicillin 10 IU/IE/UI, Tetracyclin 30 μg and Spectinomycin 100 μg were purchased from Beckton Dickinson. All media used were from Oxoid. Microorganisms included reference strains and fresh clinical isolates. The selection of clinical microorganisms depended on their availability, thus microorganisms that have been reported to be the most frequently implicated in infectious diseases in tropical areas were well represented [13-15].

Clinical isolates were *Staphylococcus aureus* (n = 5), *Enterococcus faecalis* (n = 3), *Pseudomonas aerugenosa* (n = 5), *Salmonella enterica* (n = 5) and *Streptococcus pyogenes* (n = 5). All these strains were isolated from clinical samples at Laboratoire de Biochimie du Centre Médical de l'USTM, Franceville.

The microorganisms were identified by the use of their biochemical profiles as recommended by the manual "Bactériologie Médicale" [16]. The reference strains were Escherichia coli CIP 105182, Enterococcus faecalis CIP 103907, Bacillus cereus LMG 13569 BHI, Listeria innocua LMG 135668 BHI, Staphylococcus aureus ATCC 25293 BHI, Staphylococcus camorum LMG 13567 BHI, Proteus mirabolis CIP 104588, Shigella dysenteria CIP 5451 and Staphylococcus aureus ATCC 9144.

Antibacterial assays

Agar-well diffusion: The assay was conducted as described by Perez et al. (1991) [17]. Briefly, microorganisms from growth on nutrient agar incubated at 37 °C for 18 h were suspended in saline solution 0.9 % NaCl and adjusted to a turbidity of 0.5 Mac Farland standards (108 cfu/ml) [18]. The suspension was used to inoculate 90 mm diameter Petri plates with a sterile non toxic cotton swab on a wooden applicator. Six millimeters diameter wells were punched in the agar and filled with 50 μ l of 2000 µg/ml plant extract. The dissolution of the extract was added by 0.5 % (v/v) DMSO which did not affect microorganism growth, according to our control experiments. Commercial antibiotics were used as positive reference standard to determine the sensitivity of the strains. Discs were directly placed onto the bacterial culture. Plates were incubated in air at 37 °C for 24 h. Antibacterial activities were evaluated by measuring inhibition zone diameters (IZD).

Broth microdilution assay: Broth microdilution method was used to determine minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the extract against the test microorganisms as recommended by the National Committee for Clinical Laboratory Standards [19, 20]. The tests were performed in 96 well-plates. Extracts were dissolved in 0.5 % DMSO was transferred in plates to obtain a two-fold serial dilutions ranging from 3.2 to 400 $\mu g/ml$. Then plates were inoculated with microbial suspensions diluted from the same 0.5 Mac Farland standards to have 10⁸ cfu/ml in each well [18]. The final volume in wells was 200 µl. After 24 h incubation in air at 37 °C, MIC was recorded as a lowest extract concentration demonstrating no visible growth in the broth. MBC was recorded as a lowest extract concentration that kills 99.9 % of bacterial inocula. MBC values were determined by removing 100 µl of bacterial suspension for subculture demonstrating no visible growth and by inoculating nutrient agar plates. Plates were incubated at 37 °C for a total period of 48 h [14, 15].

Antioxidant activity

Determination of DPPH radical scavenging activity: The free radical scavenging activity of chloroform and methanol extracts were determined according to the method described by Burits and Bucar (2000) [21]. Experiments were carried out as described previously [14, 15, 22]. Briefly, 0.5 mM DPPH (Fluka) radical solution in methanol was prepared, and then 1 ml of this solution was mixed with 3 ml of the sample solution in ethanol. Various concentrations of extracts were obtained. BHT (Sigma) was used as a positive control at 100 g/ml

concentration. After incubation for 30 min in the dark, the absorbance was measured at 517 nm. Decrease in the absorbance of the DPPH solution indicates an increase in DPPH radical scavenging activity. This activity is given as percent DPPH radical scavenging, which is calculated with the following equation [9, 10]:

% DPPH radical scavenging = 100 x [(A control - A sample)]/

A control

The control contained 1 ml of DPPH solution and 3 ml of ethanol. The measurements of DPPH radical scavenging activity were carried out for three sample replications and values are an average of three replicates.

Determination of antioxidant activity: The anti oxidant activity was determined according to the method described by Dapkevicius et al. (1998) [23]. 0.5 mg of -carotene was dissolved in 1 ml of chloroform (HPLC grade); 25 ul of linoleic acid and 200 mg of tween 40 were added as emulsifier because carotene is not water soluble. Chloroform was completely evaporated using a vacuum evaporator. Then, 100 ml of distilled water saturated with oxygen was added with vigorous shaking at a rate of 100 ml/min for 30 min; 2500 µl of this reaction mixture was dispersed into test tubes, and 350 µl of 2 g/l portions of the extracts, was added. The emulsion system was incubated for up to 48 h at room temperature. The same procedure was repeated with a positive control BHT and a blank. After this incubation time, the absorbance of the mixture was measured at 490 nm. Antioxidant capacities of extracts were compared with those at the BHT and the blank. Tests were carried out in triplicate [14, 15]. The Relative Antioxidant Activity (RAA %) of the extracts was calculated from the equation:

RAA % = (A_{sample}/A_{BHT}) x 100, where A_{BHT} is the absorbance of the positive control BHT and A_{sample} being the absorbance of the extract.

Statistical analysis

Data were expressed as mean ± SEM. A one way variance was used to analyze data. P< 0.01 represented significant difference between means (Duncan's multiple range test).

RESULTS AND DISCUSSION

Phytochemical screening

The phytochemical screening of the extracts was first performed to detect the major chemical groups present in the extracts. The results of this screening are shown in Table 1.

The methanolic extracts contained the most detected chemical groups compared to water or chloroform extract. Overall, we found that extracts of *Fagara heitzii* are rich in phenolic compounds. The tannins are abundant in methanolic and aqueous extracts. Chloroform and water extracts are rich in phenolic compounds and reducing compounds while flavonoids and proanthocyanidins are abundant in methanol

Table 1: Chemical groups detected in Fagara heitzii extracts

Extracts	Water	Chloroform	Methanol
Saponosids	+++		-
Tannins	++	+	+++
Reducing compounds	+++	+++	=
Phenolic compounds	+++	++	-
Flavonoids	-	++	++
Proanthocyanidins	-	++	++
Anthracenosides	-	-	-
Sterols and triterpens	-	-	-
Carotenoids	+	-	+++
Bial reaction	==	+++	++
Foulger reaction	1-1	+++	++
Polyphenols	+++	-	++

^{-:} Not detected, +: Rare, ++: Abundant, +++: Very abundant

Table 2: Antioxydant activity of Fagara heitzii Aubr. & Pellegr.

Extracts		Water	Chloroform	Methanol		
	Yield of extraction (%)		4.6	1.79	0.5	
Phenolic Content	Phenolic compounds (μg GAE/ml)		1094.67	266.75	nd	
	Flavonoids (μg QE/ml)		106.74	693.33	615.62	
	Proanthocyanidins (μg APE/ml)		339.83	1836.56	639.34	
	Tannins (μg TAE/ml)		732.82	116.33	1385.41	
Antioxidant activity	DPPH	IC ₅₀ (μg /ml)	0.21	nd nd	0.22	
	β-carotène	RAA (%)	48.8±0.5		39.4±0.5	

nd: not determined

and chloroform extracts. The methanol extract is rich in carotenoids (Table 1).

Antioxidant activity

We further determined the antioxidant activity (Table 2). The results of these tests are given in Table 2. The yield of aqueous, chloroform and methanol extracts of Fagara heitzii were respectively 4.6 % (v/v), 1.79 % (v/v) and 0.5 % (v/v).

Proanthocyanidins were 339.83 µg APE/ ml, 1836.56 µg APE/ ml and 639.34 µg APE/ml of aqueous, chloroformic and methonlic extracts. Levels of flavonoids were expressed as quercetin equivalent (QE). The equation of the right-hand side of the proportioning of the qercetin by the Dowd method gave $Y = 0.0032 X + 0.0077 \text{ with } R^2 = 1 [2].$ Flavonoids were 106.74 μg QE/ml, 693.33 μg QE/ml and 615.62 μg QE /ml of aqueous, chloroformic and methonlic extracts. Levels of tannins were expressed in terms of tannic acid equivalent (TAE). The equation of the right-hand side of the proportioning of the total tannins by the reference method of Page No 88

Levels of phenolic content were expressed in terms of gallic acid equivalent (GAE). The equation of the right and side of the proportioning of total phenolic content by the method of Folin-Ciocalteu gave Y = 0.0012 X -0.0004 with $R^2 =$ 0.9902 [24]. The total contents of phenols ranged between 1094.67 µg GAE/ml and 266.75 µg GAE/ ml of aqueous and chloroformic extracts (Table 2). The HCl/ butanol assay used here for the determination of proanthocyanidins is more specific than many other tests such as the vanillin assay [9, 10]. Levels of proanthocyanidins were expressed in terms of apple procyanidins equivalent (APE). The equation of the righthand side of the proportioning of the proanthocyanidins by the HCl- Butanol method gave Y = 0.0006 X + 0.0024with $R^2 = 0.9869$ [24].

Table 3: Inhibition zone diameters (IZD) recorded in agar diffusion with of Fagara heitzii extracts

Reference strains		Diameters of inhibition zone: IZD (mm)				
		МеОН	Chl	P	TE	SPT
E. coli CIP 105182	7 —	13	12	nd	nd	20
Shigella dysenteria CIP 5451	(4	20	13	nd	16	24
Proteus mirabolis CIP 104588	:-	nd	nd	7	15	27
Enterococcus faecalis CIP 103907	+	nd	15	27	19	36
Bacillus cereus LMG 13569 BHI	+	19	10	21	18	21
Listeria innocua LMG 135668 BHI	+	11	13	27	14	21
Staphylococcus aureus ATCC 25293 BHI	+	nd	nd	23	17	17
Staphylococcus camorum LMG 13567 BHI	+	13	17	33	21	25
Staphylococcus aureus ATCC 9144	+	13	21	19	26	21
Clinical isolates						
Pseudomonas aerugenosa (n=5)	-	9±1	nd	9±1	21±4	28±3
Salmonella enterica (n=5)	(-	20±2	24±3	nd	16±2	27±3
Enterococcus faecalis (n=3)	+	nd	13±2	24±3	17±2	26±2
Staphylococcus aureus (n=5)	+	13±2	21±3	39±3	nd	16±2
Streptococcus pyogenes (n=5)	+	7±1	13±2	29±2	21±2	30±3

nd: not determined; Chl: chloroform extract; MeOH: methanol extract; Commercially available antibiotics discs, P: Penicillin; TE: Tetracyclin and SPT: Spectinomycin.

European Community (1994) gave Y = 0.0009 X + 0.2088 with R^2 =1. Among Fagara heitzii extracts, tannins contents were 732.82 µg TAE/ml (water), 116.33 µg TAE/ml (chloroform) and 1385.41 µg TAE/ml (methanol). The concentration of proanthocyanidins and flavonoids is greater in chloroform extract while the tannins content is greater in the methanol extract and total phenols in aqueous extract.

For the DPPH test, extracts reduced the concentration of the free radical. The antioxidant capacity of extracts is significantly lower than the positive control BHT (p> 0.01), but significantly

higher than the negative control. The IC₅₀ of Fagara heitzii is 0.21 \pm 0.1 mg / ml. The oxidation of linoleic acid is weakly inhibited by methanolic and aqueous extracts of Fagara heitzii (RAA=48.8 and 39.4 \pm 0.05 %). The capacity of the methanol extract to reduce the β -carotene is greater than that of the aqueous extract and does not exceed 50 % in both cases. The antioxidant activity does not follow a radical process. What makes these extracts Fagara heitzii low potential antioxidant. The results show that the bark of Fagara heitzii, contains extractable polar compounds more abundant than the non-polar compounds. The concentration of flavonoids and

tannins is greater in the methanol extract compared to water extracts and chloroform while those of total phenols and proanthocyanidins are respectively higher in water extracts and chloroform. This activity is due to the chemical composition of extracts poor in polyphenols strongly hydroxylated.

Diameters of inhibition zone by disc assay of Fagara heitzii.

Susceptibility testing of bacterial and fungal strains to extracts Fagara heitzii gave values of inhibition zones (Table 3). The antimicrobial screening of extracts of Fagara heitzii shows that they have a potential inhibitor. The extracts are active on both Gram positive and negative bacteria. Methanol and chloroform extracts gave a high antimicrobial activity and a significant inhibition with diameters ranging from 12 to 24 mm. Salmonella enterica strains (24 mm), Staphylococcus aureus, Staphylococcus aureus ATCC 9144 (21 mm) were most sensitive to the chloroform extract. This extract gave antibacterial activity through inhibition with diameters of 13-17 mm Staphylococcus camorum LMG 13567 BHI (17 mm), Enterococcus faecalis CIP 103907 (15 mm), Listeria innocua LMG 135668 BHI, Shigella dysenteria CIP 5451, Enterococcus faecalis and Streptococcus pyogenes (13 mm).

The methanol extract yielded the zones of inhibition ranging from 9 to 20 mm. This extract has the strongest growth inhibition activity on Salmonella enterica, Shigella dysenteria CIP 5451 (20 mm) and Bacillus cereus LMG 13569 BHI (19 mm). Its gave an intermediate antibacterial activity with inhibition diameters of 13 mm on E. coli CIP 105182, Staphylococcus aureus ATCC 9144, Staphylococcus aureus (13 mm). Enterococcus faecalis CIP 103907, Enterococcus faecalis, Listeria innocua LMG 135668 BHI and Streptococcus pyogenes showed resistance to the methanol extract whereas strains Proteus mirabolis CIP 104588, Staphylococcus aureus ATCC 25293 BHI and Pseudomonas aeruginosa were not inhibited by chloroform and methanol extracts.

The methanol extract is active and has bactericidal properties on the and wild and reference bacterial strains studied with MIC and MBC equal to 25 mg/ml of Enterococcus faecalis. The

Table 4: MIC and MBC values of Fagara heitzii (mg / ml), the microdilution assay

Extracts	Chloroform		Methanol	
Reference strains	MIC	MBC	MIC	MBC
E .coli CIP 105182	50	50	50	50
Enterococcus faecalis CIP 103907	>100	nd	25	100
Bacillus cereus LMG 13569 BHI	100	50	50	50
Listeria innocua LMG 135668 BHI	25	25	50	50
Staphylococcus aureus ATCC 25293 BHI	25	25	50	50
Proteus mirabolis CIP 104588	25	25	50	50
Staphylococcus camorum LMG 13567 BHI	100	100	50	50
Shigella dysenteria CIP 5451	100	100	50	50
Staphylococcus aureus ATCC 9144	100	100	50	50
Clinical isolates				
Staphylococcus aureus (n=5)	100	nd	50	50
Streptococcus pyogenes (n=5)	>100	nd	50	50
Enterococcus faecalis (n=3)	50	50	25	25
Pseudomonas aerugenosa (n=5)	>100	nd	50	50
Salmonella enterica (n=5)	100	50	>100	nd

methanol extract is bacteriostatic against Enterococcus faecalis CIP 103907. The other strains are sensitive and the extract is bactericidal with MIC and MBC equal to 50 mg / ml of E. coli CIP 105182, Bacillus cereus LMG 13569 BHI, Listeria innocua LMG IHB 135668, Staphylococcus aureus ATCC 25293 BHI, Proteus mirabolis CIP 104588, Staphylococcus camorum LMG 13567 BHI, Shigella dysenteria CIP 5451, Staphylococcus aureus ATCC 9144, Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aerugenosa.

Broth microdilution assay

The MICs and MBCs of extracts Fagara heitzii on bacterial strains are shown in Table 4.

The highest bactericidal activity of the chloroform extract was recorded on strains Listeria innocua LMG 135668 BHI, Staphylococcus aureus ATCC 25293BHI and Proteus mirabolis CIP 104588. This extract is bactericidal with MIC and MBC equal to 50 mg/ml of E. coli and Enterococcus faecalis CIP 105182, and 100 mg / ml of Staphylococcus camorum LMG 13567 BHI, Shigella dysenteria CIP 5451, Staphylococcus aureus ATCC 9144.

CONCLUSION

Fagara heitzii Aubr. & Pellegr., is rich in phenolic compounds displayed good antimicrobial activity against several test microorganisms. The extracts reduce the concentration of the free radical. The results of the present study support the traditional medicinal use of Fagara heitzii and suggest that a great attention should be paid to this plant which is found to have many pharmacological properties. The study represents the antimicrobial and antioxidant activities of the crude extracts of the plant. Further investigations are undergoing for the isolation and identification of active principles.

REFERENCES

- 1. Walker AR, Sillans R: Les plantes utiles du Gabon; 1961.
- Obame LC: Etude Phytochimique, Activités Antimicrobiennes et Antioxydantes de Quelques Plantes Aromatiques et Médicinales Africaines. Edited by: Université de Ouagadougou 2009:258.
- Coffman JA, Kirchhamer CV, Harrington MG, Davidson EH: SpRunt-1, a New Member of the Runt Domain Family of Transcription Factors, Is a Positive Regulator of the Aboral Ectoderm-Specific > CyIIIA </i>
 Gene in Sea Urchin Embryos. Developmental biology 1996, 174:43-54.
- 4. Mokondjimobe E, Miantezila Basilua J, Barkha S, Dzeufiet PD, Chenal H, Otsudi'andjeka J-B, Bipolo S, Besse M, Mamadou G, Limas-Nzouzi N: Fagaricine, a new Immunorestorative phytomedicine from Zanthoxylum heitzii: Preclinical and multicenter cohort clinical studies based on HIV-infected patients in six countries. Edited by: Phytopharmacology; 2012.
- Ciulei I: Practical manuals on the industrial utilization of medicinal and aromatic plants. University of Bucharest, Romania 1964.
- Singleton VL, Orthofer R, Lamuela-Raventos RM: [14]
 Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology 1999, 299:152-178.
- Dicko MH, Gruppen H, Barro C, Traore AS, van Berkel WJH, Voragen AGJ: Impact of phenolic compounds and related enzymes in sorghum varieties for resistance and susceptibility to biotic and abiotic stresses. *Journal of Chemical Ecology* 2005, 31:2671-2688.
- 8. The reference method of european communauty was used to measure total amount of Tannins. 1994.
- 9. Engono M, Parkouda S, Emvo EN, Lebibi J: Studies on phytochemical screening, total phenolic content and antiradical activity of three extracts of Emilia sagittata DC.(Asteraceae).
- 10. Gontran Nsi Akoué, Louis-Clément Obame, Joseph Privat

- Ondo, Ibrahim Brama, Elvis Simplice Otogo N'Nang, Skitt Yvan Tapoyo, Souza A: Phytochemical composition and antiradical activity of Sakersia africana Hook. f. medicinal plant from Gabon. International journal of Biomolecules and Biomedicine 2013, 3:1-8.
- 11. Prigent S: Interactions of phenolic compounds with globular proteins and their effects on food-related functional properties: Wageningen Universiteit; 2005.
- 12. Arvouet-Grand A, Vennat B, Pourrat A, Legret P: Standardization of propolis extract and identification of principal constituents]. *Journal de pharmacie de Belgique* 1994, 49:462.
- 13. Bonfiglio G, Simpore J, Pignatelli S, Musumeci S, Solinas ML: Epidemiology of bacterial resistance in gastro-intestinal pathogens in a tropical area. *International journal of antimicrobial agents* 2002, 20:387-389.
- 14. Obame L-C, Koudou J, Chalchat J-C, Bassolé I, Edou P, Ouattara AS, Traore AS: Volatile components, antioxidant and antibacterial activities of Dacryodes buettneri HJ Lam. essential oil from Gabon. Scientific Research and Essays 2007, 2:491-495.
- 15. Koudou J, Obame L-C, Edou P, Bassolé I, Eba F, Figueredo G, Traore AS, Chalchat J-C: Volatile constituents, antioxidant and antibacterial properties of Daniella Klainei Pierre ex A. Chev. essential oil. Scientific Research and Essays 2008, 3:316-319.
- 16. Le Minor L, Véron M: Bactériologie médicale: Flammarion médecine-sciences; 1982.
- 17. Pérez FJ, Ormeño-Nuñez J: Root exudates of wild oats: allelopathic effect on spring wheat. *Phytochemistry* 1991, 30:2199-2202.
- 18. Lennette EH, Truant JP, Spaulding CH, Abella C: Manual de microbiología clínica: Salvat Editores; 1981.
- Performance Standards for Antimicrobial Susceptibility
 Test. Ninth International Supplement. M100-S9.
 Edited by Standards) NNCfCL. Wayne, PA: NCCLS (National Committee for Clinical Laboratory Standards); 1999.
- Methods for dilution, antimicrobial susceptibility tests for bacteria that grow aerobically, 5th edition volume
 Approuved standards-M7-A4. NCCLS document
 M7-A4. NCCLS (National Committee for Clinical Laboratory Standards). 2000.
- 21. Burits M, Bucar F: Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research 2000, 14:323-328.
- 22. Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A: Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. *Journal of agricultural and food chemistry* 2005, 53:1408-1416.
- 23. Dapkevicius A, Venskutonis R, van Beek TA, Linssen JPH: Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. Journal of the Science of Food and Agriculture 1998, 77:140-146.
- 24. Abdoul-Latif F, Bayili RG, Obame LC, Bassolé IHN,

Mamoudou H: Comparison of phenolic compounds and antioxidant capacities of traditional sorghum beers with other alcoholic beverages. African Journal of Biotechnology 2012, 11:14671-14678.

<u>Note:</u> Vedic Research International, Vedic Research Inc. does not responsible for any data in the present article including, but not limited to, writeup, figures, tables. If you have any questions, directly contact authors.

Visit us @ www.vedicjournals.com: DOI: http://dx.doi.org/10.14259/pm.v1i3.50

