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Experimental evidence suggests that rosemary has a wide range of biological and pharmacological activities. This study aimed at 
evaluating the effect of a crude hydroalcoholic extract of rosemary (CHER) on chromosomal aberrations induced by methyl 
methanesulfonate (MMS) in cultured meristematic cells of Allium cepa. The experiments were conducted at three different 
concentrations of CHER and none showed mutagenic activity. The damage reduction percentage was 65.07, 66.03, and 89.95% for 
the pre-treatment; 88.04, 93.30, and 84.69% for the simultaneous simple; 75.12, 73.21, and 75.55% for the simultaneous with pre-
incubation; and 84.21, 86.60, and 92.82% for the post-treatment. The results indicated that in the antimutagenicity experiments, a 
combination of these concentrations of CHER with the mutagenic agent MMS indicate that CHER had a chemopreventive effect in 
cultured A. cepa meristematic cells. CHER was effective in reducing DNA damage and is therefore considered chemopreventive and 
antimutagenic.

Mutagenic And Antimutagenic Effects Of Crude Hydroalcoholic 
Extract Of Rosemary (Rosmarinus Officinalis L.) On Cultured 
Meristematic Cells Allium Cepa.

Mutations are events that cause alterations in the DNA 
sequence of an organism. These alterations must be fixed in the 
genome to be replicated to another cell, by cellular division. 
Also, mutations can vary from a simple alteration in the 
sequence of nucleotides to changes in the chromosomal 

Abstract

structure/number. All these alterations in DNA correlate with 
oncogenesis, and thus, low cost trials for preventing mutational 
events are important.

The first attempt to evaluate tests for mutagenicity in higher 
plants was conducted by the U.S. Environmental Protection Agency 
Genetic Toxicology Program created in 1982 [1]. In 1991, The 
International Programme on Chemical Safety (IPCS) published the 
results of the first phase of plant test studies [2]. In 1994, results 
from the second phase of studies of the IPCS and employees, 
which evaluated the four most common tests in plants to detect 
mutagenic effects of environmental pollutants [3], demonstrated 
that tests in plant systems are reliable and efficient for the quick 
detection of mutagenic and clastogenic chemical agents [4]. 
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A. Induction of DNA damage
DNA damage was induced with MMS (Acros Organics®; CAS 
156890050) at a concentration of 10 μg/mL. Its chemical 
structure is C2H6O3S. MMS was chosen as the damage inducer 
because it is an alkylating agent; in other words, it adds alkyl 
groups at various positions of DNA bases [14]. It is known that 
alkylating agents are able to induce a variety of deleterious 
modifications of the DNA strands including adducts, cross-links 

and breaks, and these can be expressed as chromosomal [15] 
and micronucleus lesions.

B. Chemopreventive agent
The test material was a crude extract of Rosmarinus officinalis L. 
(rosemary). This bush exerts a potent antioxidant activity which 
is mainly due to polyphenolic components [16]. The 
concentrations were 4.5, 9.0 and 18.0 µg/mL, according to 
pilot experiments conducted (data not shown). The extraction 
process was carried out in accordance with Dias et al. [17], with 
modifications. Rosemary leaves were collected from the Horto 
de Plantas Medicinais of Centro Universitário Filadélfia- 
UNIFIL, Londrina, PR, Brazil. This material was allowed to dry 
in circulating air (40°C) and ground for use. At the Centro de 
Estudos em Nutrição e Genética Toxicológica (CENUGEN - 
UNIFIL), the resulting powder was submitted to dynamic 
maceration with 70% ethanol (Biotec®; lot: 25348), where 200 
g of powdered rosemary was placed in a beaker along with 200 
mL of 70 % ethanol. This suspension was mixed using a 
Fisatom magnetic stirrer (Brazil; Series: 318946; Model: 752A) 
for a period of 4 hours. This procedure was repeated three 
times with the same powder. After filtration, the residue was 
discarded and the solvent evaporated at 40 °C under vacuum 
(Rotavapor Tuche; Model: RE111), until the removal of all the 
solvent and then dried (Labconco Dryer; Model: Freeze dryer 
8). The extract was re-suspended with distilled water for further 
use in Allium cepa meristematic cell cultures.

C. Experimental design and analysis
Meristematic cells of Allium cepa were used as the plant test 
system. The seeds (Isla®; Lot: 21332A) were allowed to 
germinate at room temperature in Petri dishes, where they were 
covered with filter paper soaked with distilled water [18]. They 
were then subjected to different treatments and protocols, 
according to Oliveira et al. [19], with modifications, for the 
evaluation of mutagenicity and antimutagenicity. 

To determine mutagenicity, the seeds were cultivated for 120 
hours and the treatments carried out were: (a) Control (b) 
MMS and (c) CHER at three different concentrations. In the 
Control treatment, seeds were sown for 120 hours in distilled 
water (3 mL). In MMS treatment, seeds were grown for 72 
hours in distilled water (3 mL), then washed twice in distilled 
water, and subsequently transferred to plates containing 3 mL 
of and aqueous solution of 10 μg/mL MMS for 48 hours. In 
the evaluation of CHER effects, the seeds were cultivated for 
72 hours in distilled water (3 mL), washed twice in distilled 
water, and then transferred to three different plates containing 
3 mL of aqueous CHER solution at concentrations of 4.5, 9.0 
or 18.0 µg/mL, respectively. The treatments were carried out 
for 48 hours. 

For the determination of antimutagenic effect and the mode of 
action of CHER, the extract was combined with MMS 
according to the following protocols: 

Pre-treatment - the seeds were sown in distilled water (3 mL) for 

Materials  and Methods

Rank & Nielsen [5] recommended that the third phase of 
testing of studies in plants would be with chemical agents with 
antimutagenic and anticarcinogenic properties.

The daily use of antimutagenics and anticarcinogenics is the 
most efficient procedure for the prevention of cancer and 
genetic diseases. There are several ways in which the actions of 
mutagenic agents can be reduced or prevented. Thus, chemical 
agents that influence DNA repair mechanisms or the mutagen’s 
metabolism may be effective antimutagenic substances [6]. 

Methyl methanesulfonate (MMS) is classified as an alkylating 
agent, and the damage caused by it involves the transfer of 
methyl groups to the nitrogenous bases of DNA. This leads to 
altered base pairing that could introduce transitions, 
transversions and reading frame changes, in addition to 
inducing chromosomal breaks, since some alkylating agents, 
particularly the bifunctional ones, have the capacity to cause 
intra- and interstrand DNA breaks [7]. Also, according to Rank 
and Nielsen [5], MMS is an effective chemical for use as a 
positive control in tests with Allium cepa. 

Recently, studies have emphasized the beneficial effects of 
phytochemicals and plant extracts. A wide range of polyphenolic 
compounds with antioxidant activity were identified in 
Rosmarinus officinalis L., popularly known as rosemary, including 
diterpene phenolics, in addition to various flavonoids and 
phenolic compounds [8]. The antioxidants present in rosemary 
were found to be more potent than α-tocopherol and dibutyl-
hydroxytoluene [9], and it has been suggested that these 
compounds in rosemary have anti-inflammatory properties and 
chemopreventive action [10, 11], anti-tumor activity [11], and 
protective effects against H2O2 in CaCO-2 cells [12]. Hsieh et al. 
[13] believe that rosemary is a therapeutic herb with 
multifunctional properties and that it may be a good adjuvant in 
the prevention and treatment of diabetes, cardiovascular and 
neurodegenerative diseases. 

Although there are several studies on the properties of rosemary, 
there is no report on the biological effects of rosemary in a plant 
test system and no consideration for its mode of antimutagenic 
action. This study aimed to evaluate the mutagenic and 
antimutagenic action, along with mode of action, of a crude 
hydroalcoholic extract of rosemary (CHER), by determining its 
effect on chromosomal aberrations induced by MMS in 
meristematic cells of Allium cepa.
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Results

24 hours; washed twice in distilled water, and transferred to a 
plate containing CHER solution (3 mL), where they remained 
for 48 hours. Afterward, the seeds were washed and allowed to 
grow for another 48 hours in a plate containing MMS solution 
(3 mL).   

Simple simultaneous - the seeds were sown in distilled water 
(mL) for 72 hours, washed twice with distilled water, and 
transferred to a culture plate containing 3 mL solutions of MMS 
and CHER. These seeds were grown in the presence of both 
solutions for a period of 48 hours.

Simultaneous with pre-Incubation – the aqueous solutions of 
MMS and CHER were pre-incubated in a 37ºC incubator for 1 
hour and then transferred to culture plates. The seeds that were 
germinated in this solution (3 mL) for 48 hours, were previously 
grown in another Petri plate for 72 hours in the presence of 
distilled water (3mL). Before transferring the seeds, they were 
washed twice with distilled water. 

Post-treatment - the seeds were cultivated for 24 hours in 
distilled water (3 mL), then washed twice and transferred to a 
plate containing MMS solution (3 mL) for 48 hours. Next, the 
seeds were again washed twice in distilled water and transferred 
to a plate containing CHER (3 mL).

All treatments and protocols were performed in triplicate. The 
MMS solutions were always 10 μg/mL, and the concentrations 
of CHER solutions tested were 4.5, 9.0 and 18.0 µg/mL. After 
120 hours of cultivation, the roots were harvested at noon, 
because of the higher mitotic index at this time, and then fixed 
in Carnoy’s solution (3 ethanol: 1 glacial acetic acid, 3:1) [20] 
for at least 6 hours. Subsequently, the seeds were submitted to 
acid hydrolysis in 1 N HCl at 60 ºC for 6 minutes and then 
submitted to Schiff's reagent for 2 hours in the dark. The tips of 
the seeds were cut with a blade for the extraction of the 
meristematic region and placed on a slide. A drop of acetic 
carmin (2%) was later added to intensify the cytoplasmic 
staining of meristematic cells [18]. The material was then 
coverslipped, with slight pressure just to provide a better spread 
of cells on the slide. That pressure was applied delicately so as 
not to influence the analysis [21]. The coverslip was removed 
with the aid of liquid nitrogen. The slide with the material was 
allowed to dry at room temperature for 24 hours, and then 
coverslipped with a drop of Permout® placed on the biological 
material. The slides were analyzed on the next day.

A total of 15,000 cells / treatment (1000 cells/slide; 3 
replications) were analyzed using a light microscope (Microscope 
DBG) at 400X magnification. To obtain the mitotic index, the 
number of cells in the different phases of mitosis (prophase, 
metaphase, anaphase and telophase) was divided by the total 
number of cells. To obtain the total frequency of aberrations, 
the total number of aberrations was divided by the total number 
of cells. The percent reduction in DNA damage (%RD), 
suggested by Waters et al. [22], was obtained using the following 
calculation:

The main aberrations caused by MMS and observed in this 
study were anaphase and telophase bridges, breaks, gaps and 
chromosomalic bridges in prophase, metaphase, anaphase and 
telophase, metaphase adhesions, nuclear buds, disruptions in 
anaphase and telophase bridges, mini cells and micronucleus. 

The means and standard error referring to the total number of 
chromosomal aberrations, total frequency of aberrations, 
mitotic index and  percent reduction in DNA damage were 
determined in the analysis of Allium cepa cells exposed to MMS 
and/or CHER and are shown in Tables 1 to 5.

Statistical analysis of the mutagenicity test results (Table 1) 
showed that the three concentrations of CHER tested had no 
mutagenic effect because the mean numbers of chromosomal 
aberrations found with the three concentrations of CHER were 
statistically similar to that of Control. The frequency of cells 
with chromosomal changes ranged from 3.67 to 8.67. 

In the protocol of pre-treatment (Table 2), it could be seen that 
co-treatment with CHER  had a chemopreventive effect for all 
extract concentrations tested and the frequency of damaged 
cells ranged from 10.67 to 28.00 while  percent reduction in 
DNA damage was 65.07, 66.03 and 89.95% for doses of 4.5, 
9.0 and 18.0 µg/mL, respectively. These results demonstrate a 
dose-response relationship. It was found in simple 
simultaneous treatment (Table 3) that the three concentrations 
of CHER were efficient in preventing damage to DNA. The 
frequency of damaged cells ranged from 8.33 to 14.33. The 
percent reduction in DNA damage was 88.04, 93.30 and 
84.69% for 4.5, 9.0 and 18.0 µg/mL, respectively, and an 
antimutagenic effect was demonstrated. Although in the 
protocol of simultaneous with pre-incubation (Table 4), 
reduction in DNA damage was lower, ranging from 73.21 to 
75.55%, it was still evident that there was statistically 
significant prevention of DNA damage and that it occurred at 
the three extract concentrations tested. The frequency of cells 
with chromosomal changes was 73.33, 21.00, 22.33 and 20.00 
for treatments with MMS alone and MMS with the three 
extract doses in ascending order, respectively. 

In the post-treatment protocol (Table 5), there were often 
damaged cells of 14.67, 13.00 and 8.67 for the CHER at 
concentrations of 4.5, 9.0 and 18.0 µg/mL, respectively, 
indicating efficiency in the reduction of DNA damage. The 
percent reduction in DNA damage ranged from 84.21 to 
92.82%.

  Mean of positive control – Mean of associated group
 Mean of positive control – Mean of negative control

Statistical analysis was performed by ANOVA/Tukey. The 
differences were significant when p <0.05.
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Table 1: Chromosomal aberrations, means and standard error, total frequency of aberrations, and mitotic index determined in 
15,000 meristematic cells of Allium cepa exposed to MMS and CHER, using the protocol of mutagenicity.

CHER: crude hydroalcoholic extract from rosemary; SE: standard error; FTA (%): total frequency of aberrations expressed as a percentage; MI (%): 
mitotic index expressed as a percentage; B: anaphase and/or in telophase with bridges; CB: chromosome breaks in prophase, metaphase, anaphase 
and/or telophase; D: delayed prophase, metaphase, anaphase and/or telophase; L: chromosome losses in prophase, metaphase, anaphase and/or 
telophase; A: adherence in metaphase; BU: nuclear bud; BC: bridge collapse in anaphase and/or telophase; MC: mini cell and MN: micronucleus; 
MMS: aqueous solution of methyl methanesulfonate; CHER: aqueous solution of crude hydroalcoholic extract of rosemary. a,bLetters indicate 
statistically different results (p <0.05, ANOVA/Tukey).

Table 2: Chromosomal aberrations, means and standard error of mean, total frequency of aberrations, mitotic index and percent 
reduction in DNA damage, determined in 15,000 meristematic cells of Allium cepa exposed to MMS and CHER, in the evaluate of 
the antimutagenicity referring to the protocol of pre-treatment.

%RD: percent of damage reduction. For abbreviations see legend to Table 1. a,bLetters indicate statistically different results (p <0.05, ANOVA/
Tukey).

Table 3: Chromosomal aberrations, means and standard error of mean, total frequency of aberrations, mitotic index and percent 
reduction in DNA damage, determined in 15,000 meristematic cells of Allium cepa exposed to MMS and CHER, in the evaluate of 
the antimutagenicity referring to the protocol of simple simultaneous.

%RD: percent of damage reduction. For abbreviations see legend to Table 1. a,bLetters indicate statistically different results (p <0.05, ANOVA/
Tukey).
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The analysis showed that the mitotic index in the protocol pre-
treatment (concentrations 4.5 and 9.0 µg/mL) and 
simultaneous with pre-incubation (concentrations 4.5, 9.0 and 
18.0 µg/mL) showed statistically significant differences. 
However, the treatments did not show  cytotoxicity because 
there was an increase rather than decrease in the mitotic index 
that could indicate genetic damage and therefore delay of the 
cell cycle (Tables 1 and 5). 

Because of these results and considering the chemopreventive 
effects in different protocols, there was a need to check the rates 
of increase and/or decrease in antimutagenic activity related to 
the simple simultaneous treatment protocol (Table 6). The 
calculations were made by dividing the percent reduction in 
DNA damage for the different treatments in the simple 
simultaneous protocol by the percent reduction in DNA damage 
for corresponding treatments in the other protocols, multiplying 
by 100, and subtracting this product from 100 [19]. The analysis 
of this table showed that there was an increased reduction in 
DNA damage with 4.5 and 9.0 µg/mL CHER of 35.30 and 
41.30 percentage points, respectively, for the pre-treatment 
protocol. For the highest dose, there was a decrease in 
preventive activity and this was -5.85 percentage points. In the 
pre-incubation protocol there was a decrease of -17.20 
percentage points for DNA damage reduction at the lowest 
concentration tested. For the two higher doses, there was an 
increase in DNA damage reduction of 27.44 and 12.10 
percentage points for concentrations of 9.0 and 18.0 µg/mL, 
respectively. In the post-treatment protocol, there was an 
increase for the two lower doses and a decrease for the highest 
dose. The percentage points were 4.55, 7.74, -8.76 for 
concentrations of 4.5, 9.0 and 18.0 µg/mL, respectively. In view 
of these findings, it can be inferred that the antimutagenic 
activity of rosemary involves both desmutagenic and 
bioantimutagenic effects. In evaluating the increasing and 
decreasing rates of activity with the different protocols relative to 
the simple simultaneous one, there was no evident change that 
could predict a better desmutagenic or bioantimutagenic action.

Discussion 
Tests with Allium cepa have been used since the 1930s [23], and 
according to Rank and Nielsen [5], the sensitivity of tests in 
plants vary from 82 to 100% compared to the test performed 
with mammals, and it has been reported that if a chemical agent 
is capable of causing chromosomal damage in a plant system, 
this may also correlate to mutagenic events in other organisms 
such as mammals. Similarly, it can be inferred that if an agent is 
considered antimutagenic in a test plant, this property can be 
extended to other organisms. Thus, the Allium cepa assay can be 
considered as a screening method for mutagenic and 
antimutagenic substances.

This study evaluated the CHER, a promising antioxidant and 
antimutagenic agent containing a large number of phenolic 
compounds and some flavonoids, against damage induced by 
MMS.

MMS is an alkylating agent used in studies of mutagenesis. This 
monofunctional alkylating agent has a direct action and is 
considered a weak mutagen [24, 25]. MMS reacts with alkyl 
nucleophilic molecules such as DNA whose bases are known 
sites for alkylation, specifically nitrogen (N) and oxygen (O). 
Purine bases such as adenine (at positions N1, N3 and N7) and 
guanine (at positions N2, N3 and N7 and O6) are more likely 
to be alkylated than are the pyrimidine bases. The sites more 
susceptible to alkylation are N7 of guanine (N7G) and N3 of 
adenine (N3A). MMS induces about 80% of adducts at N7G, 
10% at N3A and only 0.3% at O6-guanine [26]. The N-
alkylpurines (N7G and N3A) do not cause pairing errors 
during replication, but they tend to cause the spontaneous 
formation of apurinic sites due to the weakening of glycosidic 
links. The apurinic sites can be mutagenic through the 
reincorporation of a wrong base. In addition, adducts derived 
from the ring-opened type in N7G can inhibit replication [27] 
and constitute a potential threat of mutagenesis. 

According to Jenkins et al. [15], O6-alkylguanine (particularly 
O6-methylguanine) seems to be the primary site responsible for 
mutations and chromosomal changes such as sister chromatid 
exchange and chromosome breakage. The mechanism for the 
conversion of these adducts into chromosomal damage is still 
unclear, but there is one possible model. 

O6-Alkylguanine adducts are not removed before the cell 
progresses to S-phase, thus the replication of DNA occurs with 
the transfer of the damage, causing an erroneous pairing, T 
instead of C. The mismatch repair then attempts to correct this 
defect by excising the mismatched T, producing DNA strand 
gaps, which subsequently block the next cycle of DNA 
replication. The stall that interrupts the replication forks may 
result in chromosomal aberrations by the induction of double-
strand breaks in the DNA helix. With regard to N7G adducts, 
base excision creates a break in the temporary DNA strand, 
which tends to lead to double-strand breaks in DNA and 
chromosome fragmentation. Therefore, these mechanisms may 
explain some chromosomal aberrations found after exposure to 
MMS, for example, chromosomal breaks and fragmentation [5]. 
In view of these reports, there is a need to find 
chemopreventive agents able to modulate these events and, 
somehow, prevent the chromosomal changes resulting from 
exposure to MMS. To assist in the understanding of how this 
adjustment can occur investigators have used different 
protocols, which are described in the literature, to understand 
the antimutagenic action of natural compounds. Thus, any 
substance able to reduce the frequency of spontaneous or 
induced mutations, regardless of the mechanism of action, is 
considered antimutagenic and can thereby be classified as 
bioantimutagenic or desmutagenic [27, 28]. 

Bioantimutagens are substances that reduce mutagenesis 
through effects on the mechanisms of DNA repair or on 
replication processes. These compounds act after an adduct is 
formed in DNA, but before the damage results in a mutation. 
Because these compounds are able to change the process of 
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Table 4: Chromosomal aberrations, mean, standard deviation of the average, total frequency of aberrations, mitotic index and 
percentage of reduction of damage to DNA, tested at 15,000 meristematic cells of Allium cepa exposed to MMS and the CHER, in the 
evaluate of the mutagenicity referring to the protocol of simultaneous with pre-incubation. 

%RD: percent of damage reduction. For abbreviations see legend to Table 1. a,b Letters indicate statistically different results (p <0.05, ANOVA/
Tukey).

Table 5: Chromosomal aberrations, mean, standard deviation of the average, total frequency of aberrations, mitotic index and 
percentage of reduction of damage to DNA, tested at 15,000 meristematic cells of Allium cepa exposed to MMS and the CHER, in the 
evaluate of the mutagenicity referring to the protocol of post-treatment.

%RD: percent of damage reduction. For abbreviations see legend to Table 1. a,b Letters indicate statistically different results (p <0.05, ANOVA/
Tukey).

Table 6: Percent increase or decrease in antimutagenic activity of crude hydroalcoholic extract of rosemary for the different treatment 
protocols compared to protocol simultaneous simple.

mutation, they are called true antimutagens [29].

The protective effects of bioantimutagens may occur through (i) 
increase in DNA replication fidelity, (ii) stimulation of DNA 
repair [30, 31] and (iii) increase in the repair mechanism’s speed 
of break-induced DNA recombination, thus reducing the 
number of mutations caused by breaks [32]. 

On the other hand, desmutagenic substances are able to 
inactivate a mutagen agent and they are characterized by the 
action of these compounds directly on the mutagenic agent, or 
on their precursors, inactivating them chemically or 
enzymatically [6, 30, 31, 33]. It has also been reported that 
desmutagenic compounds are all agents that interact with 
mutagens through mechanisms other than DNA repair or 
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replication. Focus will be given to the mechanism of 
desmutagenic activity through enzymatic modulation, because, 
according to the literature, this mechanism would be more 
relevant to the substance tested [32]. 

Enzymatic modulators are agents that prevent the formation of 
mutagens or their more potent forms [6]. They can act in 
enzyme systems, through the induction of phase I or II enzymes, 
or through altering the balance of different enzyme activities 
[32]. 

In an attempt to elucidate how the molecules or chemical 
compounds act on antimutagenicity, it was necessary to use 
different treatment protocols [34]. In the midst of various 
protocols proposed in the literature, this work used three: pre-
treatment, simultaneous with two variations (simple and with 
pre-incubation) and post-treatment. Also, Miyasato et al. (2014) 
[35] and Mauro et al. (2014) [36] have utilized these protocols to 
demonstrate the mode of action of natural products in the 
allium cepa assay.

Considering that the simple simultaneous treatment protocol 
indicates both activities, desmutagenic and bioantimutagenic, 
the simultaneous with pre-incubation determines desmutagenic 
activity, and pre-treatment and post-treatment determines 
bioantimutagenic activity [19, 37]; the analysis of the results 
suggests that the mechanism of action of the CHER is both 
desmutagenic and bioantimutagenic. This finding is consistent 
with the study of Kohlmeier et al. [32], which claims that the 
f lavonoid compounds act in a desmutagenic manner 
(modulating enzymes) and that polyphenolic compounds act in 
a bioantimutagenic manner, and also as desmutagens through 
enzyme modulation, in addition to the antioxidant activity of 
both types of compounds. 

In a more detailed analysis of the results and different 
protocols, it can be inferred that for the pre-treatment protocol, 
where the cultures were first exposed to CHER and then to the 
MMS, the interaction between the compounds, mutagenic and 
antimutagenic, occurs inside the cell. After exposure of the 
meristematic cells with the rosemary extract, the bioactive 
principles (namely flavonoids and polyphenolic compounds) 
would enter the cell and remain in the cytoplasm, or act on the 
nucleus, and the interactions between the plant compounds 
and MMS would then occur in the intracellular milieu, after the 
treatment with MMS and its uptake by the cell. Thus, for this 
protocol, two types of changes can be considered: (i) the 
bioactive principles in CHER can interact directly with MMS, 
preventing its mutagenic action, and therefore, it would have a 
desmutagenic activity and/or (ii) the same bioactive principles 
could modulate the enzyme system by improving the ability to 
repair the damage induced by MMS already mentioned in this 
discussion. It is believed that this mechanism of action is the 
most likely one. 

The simple simultaneous treatment can be considered as being 
very similar to the pre-incubation protocol, except that in this 
case, the compounds could react in the extracellular as well as 

intracellular milieu, allowing the influence of desmutagenic 
activities. However, as some compounds could reach the 
intracellular environment, MMS could cause DNA damage, 
while the compounds in rosemary’s crude hydroalcoholic 
extract could modulate the repair system and reverse the 
damage. Again, these possibilities could explain a 
bioantimutagenic effect.

In simultaneous treatment with pre-incubation, interaction 
between the test substances prior to the treatment of root tips, 
would allow the inactivation of MMS by the bioactive 
principles in rosemary extracts. Thus, in subjecting the root tips 
to this exposure, the antimutagenic activity observed is due to a 
desmutagenic effect, since MMS would have already had its 
mutagenic activity decreased due to inactivation caused by the 
rosemary extract compounds.

Lastly, in the post-treatment protocol, it was demonstrated that 
after DNA damage by MMS exposure, the treatment with the 
rosemary extract seemed to modulate the repair system so that 
the percent reduction in DNA damage remained high.

The methodology used here to study mutagenic and 
antimutagenic mechanisms using different protocols, was also 
reported by Oliveira et al. [19]. In their study, the authors used 
the same treatment protocols in mammalian cells, CHO-K1 
and HTC, to determine the mechanism of action -glucan, and 
they found that this compound shows antimutagenic activity as 
a desmutagen as well as a bioantimutagen. In another study, 
conducted by the same research group, the authors confirmed 
the suggestion of the action mechanism using ovary cells from 
wild-type and in repair-deficient Chinese hamster cells, CHO-
K1 and CHO-xrs5, respectively, and thus, they were able to 
demonstrate that the protocols are truly efficient in 
determining -glucan’s mode of action in view of the damage 
caused by mutagenic agents, among them being MMS [37].

Another important fact to be reported is that the results suggest 
a better activity by desmutagen regarding bioantimutagen. This 
can be better understood when it was analyzed the percentages 
of damage reduction. In the meantime, it appears that the 
smaller variations were observed for the post-treatment 
protocol, and these variations are not very substantial. When 
analyzing the percentages of reduced damage in the pre-
incubation protocol, there is an increase of around 20 
percentage points, which indicates that there is a better 
desmutagenic activity since this protocol is specific for 
evaluating this mode of action. Even though the pre-treatment 
protocol can indicate the two modes of action, it produced 
high rates of increase in the order of up to 40 percentage points 
and this rate may identify a preferably desmutagenic action. 
Thus, it is still considered that the protocol with greater 
efficiency was the pre-treatment one which produced the 
highest percentages of damage reduction and increased 
percentage points in antimutagenic activity. 

According to Samak-Kincl et al. [38], a decrease in mitotic 
index by 50%, compared with the control, may be considered 
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