

Translational Clinical Biology

eISSN 2330-2135

JOURNAL HOME PAGE AT WWW.VEDICJOURNALS.COM

BRIEF LETTERS

DOI: http://dx.doi.org/10.14259/tcb.v1i1.56

Iris coloboma: A Rare Case Of Waardenburg Syndromes?

ZAFER YÜKSEL1*, KADRI KARAER2

¹Eskisehir Osmangazi University, Medical Genetics Department; Eskisehir, Turkey.

²Intergen Genetics Centre; Ankara, Turkey.

Article Info: Received: September 10th, 2013; Revision: September 21st, 2013; Accepted: September 26th, 2013

ABSTRACT

Waardenburg syndromes (WS) are characterized by deafness, in addition to pigmentation anomalies. WS can be distinguished by clinical findings such as dystopia canthorum within the phenotypic series. WS type 2 (WS2) is characterized by congenital deafness and pigmentation anomalies but is different from WS1 due to absence of dystopia canthorum. In this paper, we present a rare case of WS2 case featuring bilateral iris coloboma.

Keywords: Waardenburg Syndrome, WS2, Iris heterochromia, Iris coloboma

INTRODUCTION

Waardenburg Syndromes (WS) are auditory-pigmentary disorders consisting of four types (WS1-4) and eight subtypes (Table 1). WS1 is the most common type [1] and is well defined with its clinical and molecular findings. WS1 is characterized by congenital sensorineural hearing loss and pigmentary disturbances of the iris, hair, and skin, with lateral displacement of the inner canthi (dystopia canthorum). PAX3 mutations are suggested to be responsible for WS1 [2]. WS1 can be diagnosed according to diagnostic criteria [3], however other types and subtypes are poorly characterized clinically, till this date. WS2 is distinguished from WS1 with an absence of dystopia canthorum. Deafness is a common and the most frequent feature of WS2 and seems to be more severe than WS1 [3].

Ocular pigmentation anomalies were defined in WS. Pigmentation anomaly of the iris including complete, partial/segmental heterochromia of iris, hypoplastic blue irides, or brilliant blue irides is a common feature of WS2, seen in approximately 47% of the cases [4]. Other pigmentation anomalies defined in WS2 cases are white forelock, hair hypopigmentation, premature graying of the hair (before 30)

*Corresponding Author

Zafer Yüksel MD

Eskisehir Osmangazi University, Medical Genetics Department; Eskisehir, Turkey.

Email: <u>zafush@yahoo.com</u>

years) and leukoderma (irregular skin depigmentation), among others [3]. We would like to discuss another ocular finding in the present case, coloboma, whether it is a common association or an unnoticed finding of WS.

CASE STUDY

We diagnosed a 2-year-old boy as WS2 as characterized by congenital hearing loss, iris heterochromia and absence of dystopia canthorum. Additionally he had coloboma of iris, choroid and optic disc. His right eye was blue and left eye was brown and microphthalmic (Fig 1). Heterochromia and coloboma of iris seems to be associated and in one study the frequency was found as 17.3% [4].

DISCUSSION

Waardenburg syndrome was first described as a group of anomalies including eyelids, eyebrows, with congenital deafness [5]. According to the genetic heterogeneity WS2 has five subgroups (WS2A-E) (Table 1). It is important to recognize subtypes clinically in order to perform the appropriate molecular tests. WS2A is caused by MITF (microphthalmia-associated transcription factor) mutations [6]. WS2B and WS2C were mapped to chromosome 1p21-p13.3 and 8p23, respectively. WS2D is caused by SNAI2 mutations [7]. WS2E is caused by SOX10 mutations. MITF transactivates the gene for an enzyme taking role in melanogenesis particularly melanocyte

Figure 1: Bilateral iris coloboma with heterochromia (indicated with pink arrows). Left brown eye with microphthalmos (indicated with black arrow)

differentiation. Therefore a MITF mutation affects pigmentation with the absence of melanocytes in the eyes and cochlea that leads to hypopigmentation and hearing loss in WS2A [9]. SNAI2 plays an important role by triggering epithelial-mesenchymal transitions. [10]. SNAI2 heterozygous deletions were found in sporadic and affected cases of piebaldism (congenital white forelock) [11].

In the present case parents were nonconsanguineous, father and paternal aunt had piebaldism. Therefore SNAI2 might be the responsible gene in this case, as discussed above. In addition, microphthalmic left eye may be due to mutations in MITF gene. It is possible that this may be a mere co-incidence of an association for coloboma and heterochromia of irides or a rare finding of WS2 depicting the characteristic molecular basis, as reported in previous literature. This hypothesis is just a speculation at this point and can only be confirmed through molecular analysis. We are in a process to molecularly characterize the phenotypic basis of different types and subtypes of Waardenburg Syndromes.

Table 1: Types and subtypes of Waardenburg Syndromes

Types	Subtypes
1	
2	A, B, C, D, E
3	
4	A, B, C

ACKNOWLEDGEMENT

Eskisehir Osmangazi University ethical committee have approved this paper to be published according to their permission (ESOGU-2013-0136).

REFERENCES

- Tamayo ML, Gelvez N, Rodriguez M, Florez S, Varon C, Medina D, Bernal JE. Screening program for Waardenburg syndrome in Colombia: clinical definition and phenotypic variability. Am J Med Genet A. 2008;146A:1026-31.
- Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P, Strachan T. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature. 1992;355(6361): 635-6.
- 3. Liu XZ, Newton VE, Read AP. Waardenburg syndrome type II: phenotypic findings and diagnostic criteria. Am J Med Genet 1995; 55(1): 95–100.
- 4. Morrison DA, FitzPatrick DR, Fleck BW. Iris coloboma with iris heterochromia: a common association. *Arch Ophthalmol.* 2000 Nov;118(11):1590-1).
- 5. Waardenburg PJ. A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet. 1951;3(3):195-253.
- 6. Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. *Nat Genet.* 1994;8(3): 251-5
- Sánchez-Martín M, Rodríguez-García A, Pérez-Losada J, Sagrera A, Read AP,Sánchez-García I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet. 2002;11(25):3231-6.

- 8. Farrer LA, Grundfast KM, Amos J, Arnos KS, Asher JH, Beighton P, Diehl SR, Fex J, Foy C, Friedman TB. et al. Waardenburg syndrome (WS) type I is caused by defects at multiple loci, one of which is near ALPP on chromosome 2: first report of the WS consortium. Am J Hum Genet. 1992;50:902-13.
- Tachibana, M., Takeda, K., Nobukuni, Y., Urabe, K., Long, J.
 E., Meyers, K. A., Aaronson, S. A., Miki, T. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocytes characteristics. Nature Genet. 14: 50-54,

1996.

- 10. Perez-Mancera, P. A., Bermejo-Rodriguez, C., Gonzalez-Herrero, I., Herranz, M., Flores, T., Jimenez, R., Sanchez-Garcia, I. Adipose tissue mass is modulated by SLUG (SNAI2). Hum. Molec. Genet. 16: 2972-2986, 2007.
- Sanchez-Martin, M., Perez-Losada, J., Rodriguez-Garcia, A., Gonzalez-Sanchez, B., Korf, B. R., Kuster, W., Moss, C., Spritz, R. A., Sanchez-Garcia, I. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am. J. Med. Genet. 122A: 125-132, 2003.

<u>Note:</u> Vedic Research International, Vedic Research Inc is not responsible for any data in the present article including, but not limited to, writeup, figures, tables. If you have any questions, directly contact authors.

Visit us @ www.vedicjournals.com: DOI: http://dx.doi.org/10.14259/tcb.v1i1.56

Zafer Yuksel, MD. He was born in 1983 in Eskisehir, Turkey. He was graduated from School of Medicine in Eskisehir Osmangazi University in 2007. He worked as a Research Assistant at Medical Genetics Department in Eskisehir Osmangazi University between 2008 and 2013. His specialty thesis was titled as "Investigating copy number variations in individuals showing autistic features using array comparative genomic hybridization method". He worked as visiting scholar at State Lab in School Of Medicine in Yale University, CT in 2013. His research interest is understanding the role of genetics on human development using whole exome and genome sequencing.