Open Journal Systems

Cover Image

Bioactive Molecules: their potential and limitation in Tumor Therapy

Mohamed Hassan

Abstract


Cancer is one of the most common causes of death worldwide. However, the increased incidence of cancer mortality is attributed to the increased resistance of tumor to the available therapeutic modalities. Although the significant progression that has been made in tumor treatments, these available therapeutic opportunities are still limited benefit for patients in advanced stages. In addition to their adverse effects, current anticancer agents suffer from insufficient specificity toward tumor cells because of the difficulty to target cancer cells without damaging the healthy ones. Naturally occurring bioactive molecules occupy an essential part of the available anticancer agents. These bioactive molecules are derived mainly from natural sources and have been successfully approved for tumor treatment. Although the efficiency of bioactive molecules is variable and mostly associated with threatening side effects, their clinical application in cancer treatment is indispensable. In this review, we will focus on the molecular action, potential and limitation of bioactive molecules as anticancer agent in tumor therapy.


Keywords


Bioactive molecules, Cancer, chemotherapy

Full Text:

PDF PDF Plus

References


Dayal S, Taflampas P, Riss S, Chandrakumaran K, Cecil TD, Mohamed F, Moran BJ. Complete cytoreduction for pseudomyxoma peritonei is optimal but maximal tumor debulking may be beneficial in patients in whom complete tumor removal cannot be achieved. Dis Colon Rectum. 2013, 56:1366-72.

http://dx.doi.org/10.1097/DCR.0b013e3182a62b0d

Lida S, Miki Y, Ono K, Akahira J, Nakamura Y, Suzuki T, Sasano H. Synergistic anti-tumor effects of RAD001 with MEK inhibitors in neuroendocrine tumors: a potential mechanism of therapeutic limitation of mTOR inhibitor. Mol Cell Endocrinol. 2012, 350: 99-106.

http://dx.doi.org/10.1016/j.mce.2011.11.024

George S, Kasimis BS, Cogswell J, Schwarzenberger P, Shapiro GI, Fidias P, Bukowski RM.Phase I study of flavopiridol in combination with Paclitaxel and Carboplatin in patients with non-small-cell lung cancer. Clin Lung Cancer. 2008, 9: 160-5.

http://dx.doi.org/10.3816/CLC.2008.n.024

Murray NR, Kalari KR, Fields AP. Protein kinase Cι expression and oncogenic signaling mechanisms in cancer. J Cell Physiol. 2011, 226: 879-87.

http://dx.doi.org/10.1002/jcp.22463

Yang C, Gao R, Wang J, Yuan W, Wang C, Zhou X. High-mobility group nucleosome-binding domain 5 increases drug resistance in osteosarcoma through upregulating autophagy. Tumour Biol. 2014 Mar 25.

Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PN Jr, Devere White RW, Gao AC, Evans CP. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 2014 Mar 24

http://dx.doi.org/10.1038/onc.2014.25

Iyer AK, Duan Z, Amiji MM. Nanodelivery Systems for Nucleic Acid Therapeutics in Drug Resistant Tumors. Mol Pharm. 2014 Apr 1.

http://dx.doi.org/10.1021/mp500024p

Baldo BA, Pham NH. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev. 2013, 32: 723-61.

http://dx.doi.org/10.1007/s10555-013-9447-3

Steele ML, Axtner J, Happe A, Kröz M, Matthes H, Schad F. Adverse Drug Reactions and Expected Effects to Therapy with Subcutaneous Mistletoe Extracts (Viscum album L.) in Cancer Patients. Evid Based Complement Alternat Med. 2014.

http://dx.doi.org/10.1155/2014/724258

Moudi M, Go R, Yien CY, Nazre M. Vinca Alkaloids. Int J Prev Med. 2013, 4: 1231-1235.

Shukla N, Kobos R, Renaud T, Steinherz LJ, Steinherz PG. Phase II trial of clofarabine with topotecan, vinorelbine, and thiotepa in pediatric patients with relapsed or refractory acute leukemia. Pediatr Blood Cancer. 2014, 61: 431-5.

http://dx.doi.org/10.1002/pbc.24789

Canellos GP, Rosenberg SA, Friedberg JW, Lister TA, Devita VT. Treatment of Hodgkin lymphoma: a 50-year perspective.J Clin Oncol. 2014, 32: 163-8.

http://dx.doi.org/10.1200/JCO.2013.53.1194

Cormier AR, Pang X, Zimmerman MI, Zhou HX, Paravastu AK. Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano. 2013;7:7562-72.

http://dx.doi.org/10.1021/nn401562f

Hagemeister F, Rodriguez MA, Deitcher SR, Younes A, Fayad L, Goy A, Dang NH, Forman A, McLaughlin P, Medeiros LJ, Pro B, Romaguera J, Samaniego F, Silverman JA, Sarris A, Cabanillas F. Long term results of a phase 2 study of vincristine sulfate liposome injection (Marqibo(®)) substituted for non-liposomal vincristine in cyclophosphamide, doxorubicin, vincristine, prednisone with or without rituximab for patients with untreated aggressive non-Hodgkin lymphomas. Br J Haematol. 2013, 162: 631-8.

http://dx.doi.org/10.1111/bjh.12446

Selimovic D, Badura HE, El-Khattouti A, Soell M, Porzig BB, Spernger A, Ghanjati F, Santourlidis S, Haikel Y, Hassan M. Vinblastine-induced apoptosis of melanoma cells is mediated by Ras homologous A protein (Rho A) via mitochondrial and non-mitochondrial-dependent mechanisms. Apoptosis. 2013, 8: 980-97.

http://dx.doi.org/10.1007/s10495-013-0844-4

Hagemeister F, Rodriguez MA, Deitcher SR, Younes A, Fayad L, Goy A, Dang NH, Forman A, McLaughlin P, Medeiros LJ, Pro B, Romaguera J, Samaniego F, Silverman JA, Sarris A, Cabanillas F. Long term results of a phase 2 study of vincristine sulfate liposome injection (Marqibo(®)) substituted for non-liposomal vincristine in cyclophosphamide, doxorubicin, vincristine, prednisone with or without rituximab for patients with untreated aggressive non-Hodgkin lymphomas. Br J Haematol. 2013, 162: 631-8.

http://dx.doi.org/10.1111/bjh.12446

Kaplan LD, Deitcher SR, Silverman JA, Morgan G. Phase II Study of Vincristine Sulfate Liposome Injection (Marqibo) and Rituximab for Patients With Relapsed and Refractory Diffuse Large B-Cell Lymphoma or Mantle Cell Lymphoma in Need of Palliative Therapy. Clin Lymphoma Myeloma Leuk. 2013 Oct 1.

Melichar B, Voboril Z, Lojík M, Krajina A. Liver metastases from uveal melanoma: clinical experience of hepatic arte rial infusion of cisplatin, vinblastine and dacarbazine. Hepatogastroenterology. 2009, 56:1157-62.

Atkins MB, Hsu J, Lee S, Cohen GI, Flaherty LE, Sosman JA, Sondak VK, Kirkwood JM; Eastern Cooperative Oncology Group.Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2008, 26: 5748-54.

http://dx.doi.org/10.1200/JCO.2008.17.5448

Bouffet E, Jakacki R, Goldman S, Hargrave D, Hawkins C, Shroff M, Hukin J, Bartels U, Foreman N, Kellie S, Hilden J, Etzl M, Wilson B, Stephens D, Tabori U, Baruchel S. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J Clin Oncol. 2012, 30: 1358-63.

http://dx.doi.org/10.1200/JCO.2011.34.5843

Hainsworth JD, Meluch AA, Lane CM, Spigel DR, Burris HA 3rd, Gandhi JG, Crane EJ, Stipanov MA, Greco FA. Single agent vinflunine in the salvage treatment of patients with castration-resistant prostate cancer: a phase II trial of the Sarah Cannon research consortium. Cancer Invest. 2010, 28:275-9.

http://dx.doi.org/10.3109/07357900902918460

Long QZ, Zhou M, Liu XG, Du YF, Fan JH, Li X, He DL. Interaction of CCN1 with αvβ3 integrin induces P-glycoprotein and confers vinblastine resistance in renal cell carcinoma cells. Anticancer Drugs. 2013, 24: 810-7.

http://dx.doi.org/10.1097/CAD.0b013e328363046d

Meena AS, Sharma A, Kumari R, Mohammad N, Singh SV, Bhat MK. Inherent and acquired resistance to paclitaxel in hepatocellular carcinoma: molecular events involved. PLoS One. 2013, 8:e61524.

http://dx.doi.org/10.1371/journal.pone.0061524

O'Day SJ, Eggermont AM, Chiarion-Sileni V, Kefford R, Grob JJ, Mortier L, Robert C, Schachter J, Testori A, Mackiewicz J, Friedlander P, Garbe C, Ugurel S, Collichio F, Guo W, Lufkin J, Bahcall S, Vukovic V, Hauschild A. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol. 2013, 31:1211-8.

http://dx.doi.org/10.1200/JCO.2012.44.5585

He YF, Ji CS, Hu B, Fan PS, Hu CL, Jiang FS, Chen J, Zhu L, Yao YW, Wang W. A phase II study of paclitaxel and nedaplatin as front-line chemotherapy in Chinese patients with metastatic esophageal squamous cell carcinoma. World J Gastroenterol. 2013, 19: 5910-6.

http://dx.doi.org/10.3748/wjg.v19.i35.5910

Malhotra B, Moon J, Kucuk O, Clark JI, Urba SG, Wolf GT, Worden FP.A phase II trial of biweekly gemcitabine and paclitaxel with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN): SWOG study S0329. Head Neck. 2013 Oct 25.

Kentepozidis N, Soultati A, Giassas S, Vardakis N, Kalykaki A, Kotsakis A, Papadimitraki E, Pantazopoulos N, Bozionellou V, Georgoulias V. Paclitaxel in combination with carboplatin as salvage treatment in patients with castration-resistant prostate cancer: a Hellenic oncology research group multicenter phase II study. Cancer Chemother Pharmacol. 2012, 70: 161-8.

http://dx.doi.org/10.1007/s00280-012-1896-9

Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD, Mikkelsen T, Rosenfeld S, Sarantopoulos J, Meyers CA, Fielding RM, Elian K, Wang X, Lawrence B, Shing M, Kelsey S, Castaigne JP, Wen PY. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res. 2013, 19: 1567-76.

http://dx.doi.org/10.1158/1078-0432.CCR-12-2481

Diéras V, Lortholary A, Laurence V, Delva R, Girre V, Livartowski A, Assadourian S, Semiond D, Pierga JY Cabazitaxel in patients with advanced solid tumours: results of a Phase I and pharmacokinetic study. Eur J Cancer. 2013, 49: 25-34.

http://dx.doi.org/10.1016/j.ejca.2012.07.008

Bylow KA, Atkins MB, Posadas EM, Stadler WM, McDermott DF. Phase II trial of carboplatin and paclitaxel in papillary renal cell carcinoma. Clin Genitourin Cancer. 2009, 7:39-42.

http://dx.doi.org/10.3816/CGC.2009.n.007

Risinger AL, Riffle SM, Lopus M, Jordan MA, Wilson L, Mooberry SL. The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation. Mol Cancer. 2014, 13:41.

http://dx.doi.org/10.1186/1476-4598-13-41

Xiao J, Qiu P, Lai X, He P, Wu Y, Du B, Tan Y. Cyclin-dependent kinase 1 inhibitor RO3306 promotes mitotic slippage in paclitaxel-treated HepG2 cells. Neoplasma. 2014, 61: 41-7.

http://dx.doi.org/10.4149/neo_2014_007

El-Khattouti A, Selimovic D, Haïkel Y, Megahed M, Gomez CR, Hassan M. Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response. Cancer Lett. 2014, 343: 123-33.

http://dx.doi.org/10.1016/j.canlet.2013.09.024

Selimovic D, Hassan M, Haikel Y, Hengge UR. Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell Signal. 2008, 20:311-22.

http://dx.doi.org/10.1016/j.cellsig.2007.10.015

Tammaro M, Barr P, Ricci B, Yan H. Replication-dependent and transcription-dependent mechanisms of DNA double-strand break induction by the topoisomerase 2-targeting drug etoposide. PLoS One. 2013;8: e79202.

http://dx.doi.org/10.1371/journal.pone.0079202

Li Z, Chang X, Dai D, Deng P, Sun Q. RASSF10 is an epigenetically silenced tumor suppressor in gastric cancer. Oncol Rep. 2014, 31: 1661-8.

Kubota K, Hida T, Ishikura S, Mizusawa J, Nishio M, Kawahara M, Yokoyama A, Imamura F, Takeda K, Negoro S, Harada M, Okamoto H, Yamamoto N, Shinkai T, Sakai H, Matsui K, Nakagawa K, Shibata T, Saijo N, Tamura T; Japan Clinical Oncology Group.Etoposide and cisplatin versus irinotecan and cisplatin in patients with limited-stage small-cell lung cancer treated with etoposide and cisplatin plus concurrent accelerated hyperfractionated thoracic radiotherapy (JCOG0202): a randomised phase 3 study. Lancet Oncol. 2014, 15: 106-13.

http://dx.doi.org/10.1016/S1470-2045(13)70511-4

Owonikoko TK, Aisner J, Wang XV, Dahlberg SE, Rubin EH, Ramalingam SS, Gounder M, Rausch PG, Axelrod RS, Schiller JH. E5501: phase II study of topotecan sequenced with etoposide/cisplatin, and irinotecan/cisplatin sequenced with etoposide for extensive-stage small-cell lung cancer. Cancer Chemother Pharmacol. 2014, 73: 171-80.

http://dx.doi.org/10.1007/s00280-013-2338-z

Alpsoy A, Yasa S, Gündüz U. Etoposide resistance in MCF-7 breast cancer cell line is marked by multiple mechanisms.Biomed Pharmacother. 2014, S0753-3322: 00017-1

Valle Oseguera CA, Spencer JV. cmvIL-10 stimulates the invasive potential of MDA-MB-231 breast cancer cells. PLoS One. 2014, 9:e88708.

http://dx.doi.org/10.1371/journal.pone.0088708

Mahadevan D, Sutton GR, Arteta-Bulos R, Bowden CJ, Miller PJ, Swart RE, Walker MS, Haluska P, Munster PN, Marshall J, Hamid O, Kurzrock R. Phase 1b study of safety, tolerability and efficacy of R1507, a monoclonal antibody to IGF-1R in combination with multiple standard oncology regimens in patients with advanced solid malignancies. wCancer Chemother Pharmacol. 2014, 73: 467-73.

Ashraf K, Shaikh F, Gibson P, Baruchel S, Irwin MS. Treatment with topotecan plus cyclophosphamide in children with first relapse of neuroblastoma. Pediatr Blood Cancer. 2013, 60: 1636-41.

http://dx.doi.org/10.1002/pbc.24587

Wang D, Margalit O, DuBois RN. Metronomic topotecan for colorectal cancer: a promising new option. Gut. 2013, 62:190-1.

http://dx.doi.org/10.1136/gutjnl-2012-302410

Cruz-Mu-oz W, Di Desidero T, Man S, Xu P, Jaramillo ML, Hashimoto K, Collins C, Banville M, O'Connor-McCourt MD, Kerbel RS. Analysis of acquired resistance to metronomic oral topotecan chemotherapy plus pazopanib after prolonged preclinical potent responsiveness in advanced ovarian cancer. Angiogenesis. 2014 Feb 26.

http://dx.doi.org/10.1007/s10456-014-9422-9

Warner E, Liebes L, Levinson B, Downey A, Tiersten A, Muggia F. Continuous-infusion topotecan and erlotinib: a study in topotecan-pretreated ovarian cancer assessing shed collagen epitopes as a marker of invasiveness. Oncologist. 2014,19:250.

http://dx.doi.org/10.1634/theoncologist.2013-0398

Bertozzi D, Marinello J, Manzo SG, Fornari F, Gramantieri L, Capranico G. The natural inhibitor of DNA topoisomerase I, camptothecin, modulates HIF-1α activity by changing miR expression patterns in human cancer cells. Mol Cancer Ther. 2014, 13: 239-48.

http://dx.doi.org/10.1158/1535-7163.MCT-13-0729

Venkataraman G, Maududi T, Ozpuyan F, Bahar HI, Izban KF, Qin JZ, Alkan S. Induction of apoptosis and down regulation of cell cycle proteins in mantle cell lymphoma by flavopiridol treatment. Leuk Res. 2006, 30:1377-84.

http://dx.doi.org/10.1016/j.leukres.2006.03.004

Beesoo R, Neergheen-Bhujun V, Bhagooli R, Bahorun T. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in Cancer Treatment. Mutat Res. 2014 Mar 28.

http://dx.doi.org/10.1016/j.mrfmmm.2014.03.005

Kondratyuk TP, Park EJ, Yu R, van Breemen RB, Asolkar RN, Murphy BT, Fenical W, Pezzuto JM. Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs. 2012, 10: 451-64.

http://dx.doi.org/10.3390/md10020451

Baker MA, Grubb DR, Lawen A. Didemnin B induces apoptosis in proliferating but not resting peripheral blood mononuclear cells. Apoptosis. 2002, 7: 407-12.

http://dx.doi.org/10.1023/A:1020078907108

Grubb DR, Ly JD, Vaillant F, Johns on KL, Lawen A. Mitochondrial cytochrome c release is caspase-dependent and does not involve mitochondrial permeability transition in didemnin B-induced apoptosis. Oncogene. 2001, 20: 4085-94.

http://dx.doi.org/10.1038/sj.onc.1204545

Kucuk O, Young ML, Habermann TM, Wolf BC, Jimeno J, Cassileth PA.Phase II trail of didemnin B in previously treated non-Hodgkin's lymphoma: an Eastern Cooperative Oncology Group (ECOG) Study. Am J Clin Oncol. 2000, 23: 273-7.

http://dx.doi.org/10.1097/00000421-200006000-00013

Mastbergen SC, Duivenvoorden I, Versteegh RT, Geldof AA. Cell cycle arrest and clonogenic tumor cell kill by divergent chemotherapeutic drugs. Anticancer Res. 2000, 20: 1833-8.

Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, Martinez T, Fernandez-Sousa JM, Sanchez-Puelles JM, Munoz A. Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem. 2003, 278: 241-50.

http://dx.doi.org/10.1074/jbc.M201010200

Erba E, Bassano L, Di Liberti G, Muradore I, Chiorino G, Ubezio P, Vignati S, Codegoni A, Desiderio MA, Faircloth G, Jimeno J, D'Incalci M. Cell cycle phase perturbations and apoptosis in tumour cells induced by aplidine. Br J Cancer. 2002, 86: 1510-7.

http://dx.doi.org/10.1038/sj.bjc.6600265

Le Tourneau C, Faivre S, Ciruelos E, Domínguez MJ, López-Martín JA, Izquierdo MA, Jimeno J, Raymond E. Reports of clinical benefit of plitidepsin (Aplidine), a new marine-derived anticancer agent, in patients with advanced medullary thyroid carcinoma. Am J Clin Oncol. 2010, 33: 132-6

Eisen T, Thomas J, Miller WH Jr, Gore M, Wolter P, Kavan P, Martín JA, Lardelli P. Phase II study of biweekly plitidepsin as second-line therapy in patients with advanced malignant melanoma. Melanoma Res. 2009, 19: 185-92.

http://dx.doi.org/10.1097/CMR.0b013e32832bbde6

Schöffski P, Guillem V, Garcia M, Rivera F, Tabernero J, Cullell M, Lopez-Martin JA, Pollard P, Dumez H, del Muro XG, Paz-Ares L. Phase II randomized study of Plitidepsin (Aplidin), alone or in association with L-carnitine, in patients with unresectable advanced renal cell carcinoma. Mar Drugs. 2009, 7:57-70.

http://dx.doi.org/10.3390/md7010057

Bravo SB, García-Rendueles ME, Seoane R, Dosil V, Cameselle-Teijeiro J, López-Lázaro L, Zalvide J, Barreiro F, Pombo CM, Alvarez CV. Plitidepsin has a cytostatic effect in human undifferentiated (anaplastic) thyroid carcinoma. Clin Cancer Res. 2005, 11: 7664-73.

http://dx.doi.org/10.1158/1078-0432.CCR-05-0455

Anthoney DA, Twelves CJ. DNA: still a target worth aiming at? A review of new DNA-interactive agents. Am J Pharmacogenomics. 2001,1: 67-81.

http://dx.doi.org/10.2165/00129785-200101010-00008

Sessa C, Del Conte G, Christinat A, Cresta S, Perotti A, Gallerani E, Lardelli P, Kahatt C, Alfaro V, Iglesias JL, Fernández-Teruel C, Gianni L. Phase I clinical and pharmacokinetic study of trabectedin and cisplatin given every three weeks in patients with advanced solid tumors. Invest New Drugs. 2013, 31:1236-43.

http://dx.doi.org/10.1007/s10637-013-9942-y

Martínez-Serra J, Maffiotte E, Martín J, Bex T, Navarro-Palou M, Ros T, Plazas JM, Vögler O, Gutiérrez A, Amat JC, Ramos R, Saus C, Ginés J, Alemany R, Diaz M, Besalduch J.Yondelis® (ET-743, Trabectedin) sensitizes cancer cell lines to CD95-mediated cell death: new molecular insight into the mechanism of action. Eur J Pharmacol. 2011, 658: 57-64.

http://dx.doi.org/10.1016/j.ejphar.2011.02.035

Takebayashi Y, Pourquier P, Yoshida A, Kohlhagen G, Pommier Y.Poisoning of human DNA topoisomerase I by ecteinascidin 743, an anticancer drug that selectively alkylates DNA in the minor groove. Proc Natl Acad Sci U S A. 1999, 96:7196-201.

http://dx.doi.org/10.1073/pnas.96.13.7196

Bonfanti M, La Valle E, Fernandez Sousa Faro JM, Faircloth G, Caretti G, Mantovani R, D'Incalci M. Effect of ecteinascidin-743 on the interaction between DNA binding proteins and DNA. Anticancer Drug Des. 1999, 14:179-86.

Gajula PK, Asthana J, Panda D, Chakraborty TK. A synthetic dolastatin 10 analogue suppresses microtubule dynamics, inhibits cell proliferation, and induces apoptotic cell death.J Med Chem. 2013, 56: 2235-45.

http://dx.doi.org/10.1021/jm3009629

Gianolio DA, Rouleau C, Bauta WE, Lovett D, Cantrell WR Jr, Recio A 3rd, Wolstenholme-Hogg P, Busch M, Pan P, Stefano JE, Kramer HM, Goebel J, Krumbholz RD, Roth S, Schmid SM, Teicher BA. Targeting HER2-positive cancer with dolastatin 15 derivatives conjugated to trastuzumab, novel antibody-drug conjugates. Cancer Chemother Pharmacol. 2012, 70: 439-49.

http://dx.doi.org/10.1007/s00280-012-1925-8

Pettit GR, Xu JP, Doubek DL, Chapuis JC, Schmidt JM. Antineoplastic Agents. 510. Isolation and structure of dolastatin 19 from the Gulf of California sea hare Dolabella auricularia. J Nat Prod. 2004, 67: 1252-5.

http://dx.doi.org/10.1021/np030198b

Sato M, Sagawa M, Nakazato T, Ikeda Y, Kizaki M. A natural peptide, dolastatin 15, induces G2/M cell cycle arrest and apoptosis of human multiple myeloma cells. Int J Oncol. 2007, 30: 1453-9.

Amedei A, D'Elios MM. New therapeutic approaches by using microorganism-derived compounds. Curr Med Chem. 2012,19: 3822-40.

http://dx.doi.org/10.2174/092986712801661167

Pefani E, Panoskaltsis N, Mantalaris A, Georgiadis M, Pistikopoulos E. Chemotherapy Drug Scheduling for the Induction Treatment of patients with Acute Myeloid Leukemia. IEEE Trans Biomed Eng. 2014 Mar 24.

Sano K, Nakajima T, Choyke PL, Kobayashi H. The effect of photoimmunotherapy followed by liposomal daunorubicin in a mixed tumor model: a demonstration of the super-enhanced permeability and retention effect after photoimmunotherapy. Mol Cancer Ther. 2014, 13: 426-32.

http://dx.doi.org/10.1158/1535-7163.MCT-13-0633

DE Azevedo Delou JM, Lopes AG, Capella MA. Effects of Angiotensin, vasopressin and aldosterone on proliferation of mcf-7 cells and their sensitivity to Doxorubicin. Anticancer Res. 2014, 34:1843-8.

Howard DS, Liesveld J, Phillips GL 2nd, Hayslip J, Weiss H, Jordan CT, Guzman ML. A phase I study using bortezomib with weekly idarubicin for treatment of elderly patients with acute myeloid leukemia. Leuk Res. 2013, 37: 1502-8.

http://dx.doi.org/10.1016/j.leukres.2013.09.003

Gao L, Gao L, Gong Y, Zhang C, Chen XH, Zhang X. Reduced-intensity conditioning therapy with fludarabine, idarubicin, busulfan and cytarabine for allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia and myelodysplastic syndrome. Leuk Res. 2013, 37: 1482-7.

http://dx.doi.org/10.1016/j.leukres.2013.08.016

Loor F, Boesch D, Gavériaux C, Jachez B, Pourtier-Manzanedo A, Emmer G. SDZ 280-446, a novel semi-synthetic cyclopeptolide: in vitro and in vivo circumvention of the P-glycoprotein-mediated tumour cell multidrug resistance. Br J Cancer. 1992, 65: 11-8.

http://dx.doi.org/10.1038/bjc.1992.3

Zhao J, Liu J, Chen K, Li S, Wang Y, Yang Y, Deng H, Jia W, Rao N, Liu Q, Su F. What lies behind chemotherapy-induced amenorrhea for breast cancer patients: a meta-analysis. Breast Cancer Res Treat. 2014 Mar 27.

http://dx.doi.org/10.1007/s10549-014-2914-x

Ding J, Romani J, Zaborski M, MacLeod RA, Nagel S, Drexler HG, Quentmeier H. Inhibition of PI3K/mTOR overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2. PLoS One. 2013, 8: e83510.

http://dx.doi.org/10.1371/journal.pone.0083510

Matsuhashi S, Hamajima H, Xia J, Zhang H, Mizuta T, Anzai K, Ozaki I. Control of a tumor suppressor PDCD4: Degradation mechanisms of the protein in hepatocellular carcinoma cells. Cell Signal. 2014, 26: 603-10.

http://dx.doi.org/10.1016/j.cellsig.2013.11.038

Calvi-o E, Esta- M C, Sánchez-Martín C, Brea R, de Blas E, Boyano-Adánez Mdel C, Rial E, Aller P.Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation. J Pharmacol Exp Ther. 2014, 348: 324-35.

http://dx.doi.org/10.1124/jpet.113.206714

Trojandt S, Reske-Kunz AB, Bros M. Geldanamycin-mediated inhibition of heat shock protein 90 partially activates dendritic cells, but interferes with their full maturation, accompanied by impaired upregulation of RelB. J Exp Clin Cancer Res. 2014 Feb 13;33:16.

http://dx.doi.org/10.1186/1756-9966-33-16

Quast SA, Berger A, Eberle J.ROS-dependent phosphorylation of Bax by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis. Cell Death Dis. 2013, 4:e839.

http://dx.doi.org/10.1038/cddis.2013.344

Sutton KM, Greenshields AL, Hoskin DW. Thymoquinone, A Bioactive Component of Black Caraway Seeds, Causes G1 Phase Cell Cycle Arrest and Apoptosis in Triple-Negative Breast Cancer Cells with Mutant p53. Nutr Cancer. 2014, 66:408-18.

http://dx.doi.org/10.1080/01635581.2013.878739

Prasad S, Madan E, Nigam N, Roy P, George J, Shukla Y. Induction of apoptosis by lupeol in human epidermoid carcinoma A431 cells through regulation of mitochondrial, Akt/PKB and NFkappaB signaling pathways. Cancer Biol Ther. 2009, 8:1632-9.

http://dx.doi.org/10.4161/cbt.8.17.9204

Zhou L, Luan H, Liu Q, Jiang T, Liang H, Dong X, Shang H. Activation of PI3K/Akt and ERK signaling pathways antagonized sinomenine-induced lung cancer cell apoptosis. Mol Med Rep. 2012, 5:1256-60.

Liu F, He Y, Liang Y, Wen L, Zhu Y, Wu Y, Zhao L, Li Y, Mao X, Liu H. PI3-kinase inhibition synergistically promoted the anti-tumor effect of lupeol in hepatocellular carcinoma. Cancer Cell Int. 2013, 13:108.

http://dx.doi.org/10.1186/1475-2867-13-108

Peng L, Liu A, Shen Y, Xu HZ, Yang SZ, Ying XZ, Liao W, Liu HX, Lin ZQ, Chen QY, Cheng SW, Shen WD. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol Rep. 2013, 29: 571-8.

Saussede-Aim J, Matera EL, Herveau S, Rouault JP, Ferlini C, Dumontet C. Vinorelbine induces beta3-tubulin gene expression through an AP-1 Site. Anticancer Res. 2009, 29: 3003-9.

Kolomeichuk SN, Terrano DT, Lyle CS, Sabapathy K, Chambers TC. Distinct signaling pathways of microtubule inhibitors--vinblastine and Taxol induce JNK-dependent cell death but through AP-1-dependent and AP-1-independent mechanisms, respectively. FEBS J. 2008, 275:1889-99.

http://dx.doi.org/10.1111/j.1742-4658.2008.06349.x

Berry A, Goodwin M, Moran CL, Chambers TC. AP-1 activation and altered AP-1 composition in association with increased phosphorylation and expression of specific Jun and Fos family proteins induced by vinblastine in KB-3 cells. Biochem Pharmacol. 2001, 62: 581-91.

http://dx.doi.org/10.1016/S0006-2952(01)00694-3

Furdas SD, Kannan S, Sippl W, Jung M. Small molecule inhibitors of histone acetyltransferases as epigenetic tools and drug candidates. Arch Pharm (Weinheim). 2012, 345:7-21.

http://dx.doi.org/10.1002/ardp.201100209

Bhatia N, Agarwal R. Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells. Prostate. 2001, 46: 98-107.

http://dx.doi.org/10.1002/1097-0045(20010201)46:2<98::AID-PROS1013>3.0.CO;2-K

Ren J, Singh BN, Huang Q, Li Z, Gao Y, Mishra P, Hwa YL, Li J, Dowdy SC, Jiang SW. DNA hypermethylation as a chemotherapy target. Cell Signal. 2011, 23: 1082-93.

http://dx.doi.org/10.1016/j.cellsig.2011.02.003

Huang Y, Rachid Z, Jean-Claude BJ. MGMT is a molecular determinant for potency of the DNA-EGFR-combi-molecule ZRS1. Mol Cancer Res. 2011, 9: 320-31.

http://dx.doi.org/10.1158/1541-7786.MCR-10-0407

Li Z, Sun B, Clewell RA, Adeleye Y, Andersen ME, Zhang Q.Dose-response modeling of etoposide-induced DNA damage response. Toxicol Sci. 2014,137: 371-84.

http://dx.doi.org/10.1093/toxsci/kft259

Tang W, Wang C, Fu F, Chen Q. RhoBTB2 gene in breast cancer is silenced by promoter methylation. Int J Mol Med. 2014, 33:722-8.

Huang Y, Song H, Hu H, Cui L, You C, Huang L. Trichosanthin inhibits DNA methyltransferase and restores methylation-silenced gene expression in human cervical cancer cells. Mol Med Rep. 2012, 6: 872-8.

Kang KA, Kim HS, Kim DH, Hyun JW. The role of a ginseng saponin metabolite as a DNA methyltransferase inhibitor in colorectal cancer cells. Int J Oncol. 2013, 43: 228-36.

Shen Y, Takahashi M, Byun HM, Link A, Sharma N, Balaguer F, Leung HC, Boland CR, Goel A. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol Ther. 2012, 13: 542-52.

http://dx.doi.org/10.4161/cbt.19604

Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, Lee R, Tatevossian RG, Phoenix TN, Thiruvenkatam R, White E, Tang B, Orisme W, Gupta K, Rusch M, Chen X, Li Y, Nagahawhatte P, Hedlund E, Finkelstein D, Wu G, Shurtleff S, Easton J, Boggs K, Yergeau D, Vadodaria B, Mulder HL, Becksford J, Gupta P, Huether R, Ma J, Song G, Gajjar A, Merchant T, Boop F, Smith AA, Ding L, Lu C, Ochoa K, Zhao D, Fulton RS, Fulton LL, Mardis ER, Wilson RK, Downing JR, Green DR, Zhang J, Ellison DW, Gilbertson RJ. C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature. 2014, 506: 451-5.

http://dx.doi.org/10.1038/nature13109

Chuma M, Sakamoto N, Nakai A, Hige S, Nakanishi M, Natsuizaka M, Suda G, Sho T, Hatanaka K, Matsuno Y, Yokoo H, Kamiyama T, Taketomi A, Fujii G, Tashiro K, Hikiba Y, Fujimoto M, Asaka M, Maeda S. Heat shock factor 1 accelerates hepatocellular carcinoma development by activating nuclear factor-κB/mitogen-activated protein kinase. Carcinogenesis. 2014, 35: 272-81.

http://dx.doi.org/10.1093/carcin/bgt343

Hassan M, Selimovic D, Ghozlan H, Abdel-Kader O. Induction of high-molecular-weight (HMW) tumor necrosis factor(TNF) alpha by hepatitis C virus (HCV) non-structural protein 3 (NS3) in liver cells is AP-1 and NF-kappaB-dependent activation. Cell Signal. 2007, 19:301-11.

http://dx.doi.org/10.1016/j.cellsig.2006.07.002

Qiu C, Xie Q, Zhang D, Chen Q, Hu J, Xu L. GM-CSF Induces Cyclin D1 Expression and Proliferation of Endothelial Progenitor Cells via PI3K and MAPK Signaling. Cell Physiol Biochem. 2014, 33:784-795.

http://dx.doi.org/10.1159/000358652

Hassan M, Ghozlan H, Abdel-Kader O. Activation of c-Jun NH2-terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)-mediated cell growth. Virology. 2005, 333: 324-36.

http://dx.doi.org/10.1016/j.virol.2005.01.008

Kappelmann M, Bosserhoff A, Kuphal S. AP-1/c-Jun transcription factors: Regulation and function in malignant melanoma. Eur J Cell Biol. 2013, S0171-9335: 00062-9.

Kim G, Khanal P, Lim SC, Yun HJ, Ahn SG, Ki SH, Choi HS. Interleukin-17 induces AP-1 activity and cellular transformation via upregulation of tumor progression locus 2 activity. Carcinogenesis. 2013, 34: 341-50.

http://dx.doi.org/10.1093/carcin/bgs342




DOI: http://dx.doi.org/10.14259%2Fbmc.v2i2.119

Refbacks

  • There are currently no refbacks.