Comparison of ADAM and ADAMTS protein families in human, frog, fly and worm genomes.
Abstract
ADAM and ADAMTS family members play a crucial role in modulating the turnover of extracellular matrix, mediate cell-cell, cell matrix interactions, and are involved in several disease states. The completion of the human, fly, frog and worm genomes has now provided an opportunity to study the representative genomes in which these closely related proteins are present. In this work, we have identified and analysed ADAMs and ADAMTS to understand the distribution of the members and domain architecture. We report that, the human genome is encoded by 90 ADAMs and 92 ADAMTS genes. 11 ADAMs and 2 ADAMTS genes encode the frog genome, 19 ADAM and 6 ADAMTS genes encode the fly genome and 7 ADAMs and 8 ADAMTS genes encode the worm genome. The phylogenetic tree of ADAM and ADAMTS is organized into 6 clades and the phylogenetic tree of the corresponding metalloproteinase domain is organized into 9 clades. We identified a different domain architecture pattern in ADAMTS protein family which is not as similar as to the previous report.
Keywords
References
Wolfsberg TG, White JM: ADAMs in fertilization and development. Developmental biology 1996, 180:389-401.
http://dx.doi.org/10.1006/dbio.1996.0313
PMid:8954712
Bode W, Gomis-Rüth F-X, Stöckler W: Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS letters 1993, 331:134-140.
http://dx.doi.org/10.1016/0014-5793(93)80312-I
Skiles JW, Gonnella NC, Jeng AY: The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Current medicinal chemistry 2001, 8:425-474.
http://dx.doi.org/10.2174/0929867013373417
PMid:11172697
Lovejoy B, Hassell AM, Luther MA, Weigl D, Jordan SR: Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry 1994, 33:8207-8217.
http://dx.doi.org/10.1021/bi00193a006
PMid:8031754
Kveiborg M, Albrechtsen R, Rudkjaer L, Wen G, Damgaardâ€Pedersen K, Wewer UM: ADAM12â€S Stimulates Bone Growth in Transgenic Mice by Modulating Chondrocyte Proliferation and Maturation. Journal of Bone and Mineral Research 2006, 21:1288-1296.
http://dx.doi.org/10.1359/jbmr.060502
PMid:16869727
Holgate ST, Yang Y, Haitchi H-M, Powell RM, Holloway JW, Yoshisue H, Pang YY, Cakebread J, Davies DE: The genetics of asthma: ADAM33 as an example of a susceptibility gene. Proceedings of the American Thoracic Society 2006, 3:440-443.
http://dx.doi.org/10.1513/pats.200603-026AW
PMid:16799089
Tanabe C, Hotoda N, Sasagawa N, Sehara-Fujisawa A, Maruyama K, Ishiura S: ADAM19 is tightly associated with constitutive Alzheimer's disease APP α-secretase in A172 cells. Biochemical and biophysical research communications 2007, 352:111-117.
http://dx.doi.org/10.1016/j.bbrc.2006.10.181
PMid:17112471
Melenhorst W, Van Den Heuvel M, Stegeman C, Van Der Leij J, Huitema S, Van Den Berg A, Van Goor H: Upregulation of ADAM19 in chronic allograft nephropathy. American journal of transplantation 2006, 6:1673-1681.
http://dx.doi.org/10.1111/j.1600-6143.2006.01384.x
PMid:16827870
Rocks N, Paulissen G, Calvo FQ, Polette M, Gueders M, Munaut C, Foidart J-M, Noel A, Birembaut P, Cataldo D: Expression of a disintegrin and metalloprotease (ADAM and ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC). British journal of cancer 2006, 94:724-730.
PMid:16495931 PMCid:PMC2361209
Takada H, Imoto I, Tsuda H, Nakanishi Y, Ichikura T, Mochizuki H, Mitsufuji S, Hosoda F, Hirohashi S, Ohki M: ADAM23, a possible tumor suppressor gene, is frequently silenced in gastric cancers by homozygous deletion or aberrant promoter hypermethylation. Oncogene 2005, 24:8051-8060.
http://dx.doi.org/10.1038/sj.onc.1208952
PMid:16103878
Kuefer R, Day KC, Kleer CG, Sabel MS, Hofer MD, Varambally S, Zorn CS, Chinnaiyan AM, Rubin MA, Day ML: ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia (New York, NY) 2006, 8:319.
http://dx.doi.org/10.1593/neo.05682
PMid:16756724 PMCid:PMC1600681
Oppezzo P, Vasconcelos Y, Settegrana C, Jeannel D, Vuillier F, Legarff-Tavernier M, Kimura EY, Bechet S, Dumas G, Brissard M: The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 2005, 106:650-657.
http://dx.doi.org/10.1182/blood-2004-08-3344
PMid:15802535
Shigemura K, Sung SY, Kubo H, Arnold RS, Fujisawa M, Gotoh A, Zhau HE, Chung LW: Reactive oxygen species mediate androgen receptorâ€and serum starvationâ€elicited downstream signaling of ADAM9 expression in human prostate cancer cells. The Prostate 2007, 67:722-731.
http://dx.doi.org/10.1002/pros.20565
PMid:17342749
Porter S, Span PN, Sweep FC, Tjanâ€Heijnen VC, Pennington CJ, Pedersen TX, Johnsen M, Lund LR, Rømer J, Edwards DR: ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. International journal of cancer 2006, 118:1241-1247.
http://dx.doi.org/10.1002/ijc.21476
PMid:16152618
Cerretti DP, DuBose RF, Black RA, Nelson N: Isolation of two novel metalloproteinase-disintegrin (ADAM) cDNAs that show testis-specific gene expression. Biochemical and biophysical research communications 1999, 263:810-815.
http://dx.doi.org/10.1006/bbrc.1999.1322
PMid:10512762
Frayne J, Hurd EA, Hall L: Human tMDC III: a sperm protein with a potential role in oocyte recognition. Molecular human reproduction 2002, 8:817-822.
http://dx.doi.org/10.1093/molehr/8.9.817
PMid:12200459
Giovanna M, Ng K, Paradiso L, Godde NJ, Kaye A, Novak U: ADAM22, expressed in normal brain but not in high-grade gliomas, inhibits cellular proliferation via the disintegrin domain. Neurosurgery 2006, 58:179-186.
http://dx.doi.org/10.1227/01.NEU.0000192363.84287.8B
Solomon DH, Stedman M, Licari A, Weinblatt ME, Maher N: Agreement between patient report and medical record review for medications used for rheumatoid arthritis: The accuracy of selfâ€reported medication information in patient registries. Arthritis Care & Research 2007, 57:234-239.
http://dx.doi.org/10.1002/art.22549
PMid:17330299
Goertsches R, Comabella M, Navarro A, Perkal H, Montalban X: Genetic association between polymorphisms in the< i> ADAMTS14 gene and multiple sclerosis. Journal of neuroimmunology 2005, 164:140-147.
http://dx.doi.org/10.1016/j.jneuroim.2005.04.005
PMid:15913795
Ng YH, Zhu H, Pallen CJ, Leung PC, MacCalman CD: Differential effects of interleukin-1β and transforming growth factor-β1 on the expression of the inflammation-associated protein, ADAMTS-1, in human decidual stromal cells in vitro. Human Reproduction 2006, 21:1990-1999.
http://dx.doi.org/10.1093/humrep/del108
PMid:16675485
Davies JA, Bowen DJ: An association between the L1565 variant of von Willebrand factor and susceptibility to proteolysis by ADAMTS13. haematologica 2007, 92:240-243.
Mitani H, Takahashi I, Onodera K, Bae J-W, Sato T, Takahashi N, Sasano Y, Igarashi K, Mitani H: Comparison of age-dependent expression of aggrecan and ADAMTSs in mandibular condylar cartilage, tibial growth plate, and articular cartilage in rats. Histochemistry and cell biology 2006, 126:371-380.
http://dx.doi.org/10.1007/s00418-006-0171-8
PMid:16583222
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. Journal of molecular biology 1990, 215:403-410.
PMid:2231712
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 1997, 25:3389-3402.
http://dx.doi.org/10.1093/nar/25.17.3389
PMid:9254694 PMCid:PMC146917
Schultz J, Milpetz F, Bork P, Ponting CP: SMART, a simple modular architecture research tool: identification of signaling domains. Proceedings of the National Academy of Sciences 1998, 95:5857-5864.
http://dx.doi.org/10.1073/pnas.95.11.5857
PMid:9600884
Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P: SMART 5: domains in the context of genomes and networks. Nucleic acids research 2006, 34:D257-D260.
http://dx.doi.org/10.1093/nar/gkj079
PMid:16381859 PMCid:PMC1347442
Mulder N, Apweiler R: InterPro and InterProScan. In Comparative genomics. Edited by: Springer; 2007:59-70.
PMid:18025686
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 1994, 22:4673-4680.
http://dx.doi.org/10.1093/nar/22.22.4673
PMid:7984417 PMCid:PMC308517
Felsenstein J: Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods in enzymology 1996, 266:418-427.
http://dx.doi.org/10.1016/S0076-6879(96)66026-1
Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996, 12:2.
Mueller CG, Rissoan M-C, Salinas B, Ait-Yahia S, Ravel O, Bridon J-M, Briere F, Lebecque S, Liu Y-J: Polymerase chain reaction selects a novel disintegrin proteinase from CD40-activated germinal center dendritic cells. The Journal of experimental medicine 1997, 186:655-663.
http://dx.doi.org/10.1084/jem.186.5.655
PMid:9271581 PMCid:PMC2199019
Stathopoulos A, Levine M: Whole-Genome Expression Profiles Identify Gene Batteries in< i> Drosophila. Developmental cell 2002, 3:464-465.
http://dx.doi.org/10.1016/S1534-5807(02)00300-3
Chen Y, Hehr CL, Atkinson-Leadbeater K, Hocking JC, McFarlane S: Targeting of retinal axons requires the metalloproteinase ADAM10. The Journal of neuroscience 2007, 27:8448-8456.
http://dx.doi.org/10.1523/JNEUROSCI.1841-07.2007
PMid:17670992
DOI: http://dx.doi.org/10.14259%2Fbp.v2i1.92
Refbacks
- There are currently no refbacks.






