Targeting lipid metabolism to improve oocyte cryopreservation (OCP) in domestic animals
Abstract
Oocyte cryopreservation (OCP) lags behind other advances that have recently been made in many areas of assisted reproductive technology. One of the risk factors that increases the chilling sensititvity, specieally in domestic animals, is the high lipid content of oocytes. Many studies have demonstrated that reducing the lipid content improves cryosurvival of oocytes. The methods that have been used to reduce the lipid content include mechanical delipidation by centrigation of the oocytes and polarizing lipid droplets, ehnahcing lipid catabolism and inhibiting lipogenesis. Targets of the latter incude fatty acids that are synthesized de novo and those taken up by the oocytes from culture media. We provide an overview of studies conducted on delipidation and suggestions for future studies in the area.Â
Keywords
Full Text:
PDFReferences
Heape W: The artificial insemination of mammals and subsequent possible fertilization or impregnation of their ova. Proc.Royal Soc., London 1897, 61:52-63.
http://dx.doi.org/10.1098/rspl.1897.0012
Heape W: Preliminary note on the transplantation and growth of mammalian ova within a uterine foster mother. Proc.Royal Soc., London 1890, 48:457-458.
http://dx.doi.org/10.1098/rspl.1890.0053
Stewart DL: Storage of bull spermatozoa at low temperatures. Vet.Rec. 1951, 63:65-66.
Chang MC: Fertilization of rabbit ova in vitro. Nature 1959, 179:466-467.
http://dx.doi.org/10.1038/184466a0
Whittingham DG, Leibo SP, Mazur P: Survival of mouse embryos frozen to -196 degrees and -269 degrees C. Science 1972, 178:411-414.
http://dx.doi.org/10.1126/science.178.4059.411
PMid:5077328
Whittingham DG: Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at --196 degrees C. J Reprod Fertil 1977, 49:89-94.
http://dx.doi.org/10.1530/jrf.0.0490089
PMid:833794
Campbell KHS, McWhir J, Ritchie WA, Wilmut I: Live lambs by nuclear transfer from an established cell line. Theriogenology 1996, 45:287 (Abstr).
http://dx.doi.org/10.1016/0093-691X(96)84760-1
Lin C, Wang LH, Meng PJ, Chen CS, Tsai S: Lipid content and composition of oocytes from five coral species: potential implications for future cryopreservation efforts. PLoS One 2013, 8:e57823.
http://dx.doi.org/10.1371/journal.pone.0057823
PMid:23469074 PMCid:PMC3585170
Pope CE, Gomez MC, Kagawa N, Kuwayama M, Leibo SP, Dresser BL: In vivo survival of domestic cat oocytes after vitrification, intracytoplasmic sperm injection and embryo transfer. Theriogenology 2012, 77:531-538.
http://dx.doi.org/10.1016/j.theriogenology.2011.08.028
PMid:22015162
Prentice JR, Anzar M: Cryopreservation of mammalian oocyte for conservation of animal genetics. Vet.Med.Int. 2010, 2011.
Didion BA, Pomp D, Martin MJ, Homanics GE, Markert CL: Observations on the cooling and cryopreservation of pig oocytes at the germinal vesicle stage. J Anim Sci 1990, 68:2803-2810.
PMid:2211410
Somfai T, Kikuchi K, Nagai T: Factors affecting cryopreservation of porcine oocytes. Journal of Reproduction and Development 2012, 58:17-24.
http://dx.doi.org/10.1262/jrd.11-140N
PMid:22450280
Zhou GB, Li N: Cryopreservation of porcine oocytes: recent advances. Molecular Human Reproduction 2009, 15:279-285.
http://dx.doi.org/10.1093/molehr/gap016
PMid:19251762
Wu GQ, Jia BY, Li JJ, Fu XW, Zhou GB, Hou YP, Zhu SE: L-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology 2011, 76:785-793.
http://dx.doi.org/10.1016/j.theriogenology.2011.04.011
PMid:21705056
Mullen SF, Critser JK: The comparative cryobiology of preimplantation embryos from domestic animals: Blackwell Publishing Ltd; 2007.
Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL: Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 2010, 83:909-918.
http://dx.doi.org/10.1095/biolreprod.110.084145
PMid:20686180
Takahashi T, Inaba Y, Somfai T, Kaneda M, Geshi M, Nagai T, Manabe N: Supplementation of culture medium with l-carnitine improves development and cryotolerance of bovine embryos produced in vitro. Reprod Fertil Dev 2012.
Leibo SP: Cryopreservation of oocytes and embryos: optimization by theoretical versus empirical analysis. Theriogenology 2008, 69:37-47.
http://dx.doi.org/10.1016/j.theriogenology.2007.10.006
PMid:18023472
Abe H, Hoshi H: Evaluation of bovine embryos produced in high performance serum-free media. J Reprod Dev 2003, 49:193-202.
http://dx.doi.org/10.1262/jrd.49.193
PMid:14967928
Koehler JK, Clark JM, Smith D: Freeze-fracture observations on mammalian oocytes. Am.J.Anat. 1985, 174:317-329.
http://dx.doi.org/10.1002/aja.1001740311
PMid:4072944
Pereira R, Marques C: Animal oocyte and embryo cryopreservation. Cell Tissue Bank. 2008, 9:267-277.
http://dx.doi.org/10.1007/s10561-008-9075-2
PMid:18496769
Seidel GE, Jr.: Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 2006, 65:228-235.
http://dx.doi.org/10.1016/j.theriogenology.2005.09.025
PMid:16263160
McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK: Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 2000, 118:163-170.
PMid:10793638
Genicot G, Leroy JL, Soom AV, Donnay I: The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 2005, 63:1181-1194.
http://dx.doi.org/10.1016/j.theriogenology.2004.06.006
PMid:15710202
Gomis J, Cuello C, Sanchez-Osorio J, Gil MA, Parrilla I, Angel MA, Vazquez JM, Roca J, Martinez EA: Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods. Cryobiology 2013.
http://dx.doi.org/10.1016/j.cryobiol.2012.12.009
PMid:23313786
Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Seamark RF, Nottle MB: Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biol Reprod 1994, 51:618-622.
http://dx.doi.org/10.1095/biolreprod51.4.618
PMid:7819441
Park KE, Kwon IK, Han MS, Niwa K: Effects of partial removal of cytoplasmic lipid on survival of vitrified germinal vesicle stage pig oocytes. J Reprod Dev 2005, 51:151-160.
http://dx.doi.org/10.1262/jrd.51.151
PMid:15750307
Somfai T, Kaneda M, Akagi S, Watanabe S, Haraguchi S, Mizutani E, Dang-Nguyen TQ, Geshi M, Kikuchi K, Nagai T: Enhancement of lipid metabolism with L-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes. Reprod Fertil Dev 2011, 23:912-920.
http://dx.doi.org/10.1071/RD10339
PMid:21871210
Nagashima H, Kuwayama M, Grupen CG, Ashman RJ, Nottle MB: Vitrification of porcine early cleavage stage embryos and oocytes after removal of cytoplasmic lipid droplets. Theriogenology 1996, 45:180.
http://dx.doi.org/10.1016/0093-691X(96)84653-X
Hara K, Abe Y, Kumada N, Aono N, Kobayashi J, Matsumoto H, Sasada H, Sato E: Extrusion and removal of lipid from the cytoplasm of porcine oocytes at the germinal vesicle stage: Centrifugation under hypertonic conditions influences vitrification. Cryobiology 2005, 50:216-222.
http://dx.doi.org/10.1016/j.cryobiol.2005.01.003
PMid:15843012
Otoi T, Yamamoto K, Koyama N, Tachikawa S, Murakami M, Kikkawa Y, Suzuki T: Cryopreservation of mature bovine oocytes following centrifugation treatment. Cryobiology 1997, 34:36-41.
http://dx.doi.org/10.1006/cryo.1996.1988
PMid:9028915
Garrels W, Mates L, Holler S, Dalda A, Taylor U, Petersen B, Niemann H, Izsvak Z, Ivics Z, Kues WA: Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS One 2011, 6:e23573.
http://dx.doi.org/10.1371/journal.pone.0023573
PMid:21897845 PMCid:PMC3163581
Walther TC, Farese RV, Jr.: The life of lipid droplets. Biochim Biophys Acta 2009, 1791:459-466.
Khandoker MY, Tsujii H, Karasawa D: Fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow. Asian-Aus. J. Anim. Sci 1997, 10.
Homa ST, Racowsky C, McGaughey RW: Lipid analysis of immature pig oocytes. J Reprod Fertil 1986, 77:425-434.
http://dx.doi.org/10.1530/jrf.0.0770425
PMid:3735242
Silva RC, Bao SN, Jivago JL, Lucci CM: Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: lipid component evolution. Theriogenology 2011, 76:1647-1657.
http://dx.doi.org/10.1016/j.theriogenology.2011.06.029
PMid:21835450
Ratchford AM, Chang AS, Chi MM, Sheridan R, Moley KH: Maternal diabetes adversely affects AMP-activated protein kinase activity and cellular metabolism in murine oocytes. Am J Physiol Endocrinol Metab 2007, 293:E1198-1206.
http://dx.doi.org/10.1152/ajpendo.00097.2007
PMid:17684106
Algriany OA: Expression analysis of genes implicated in meiotic resumption in vivo and developmental competence of bovine oocytes. Edited by. Utrecht: Utrecht University; 2007. vol Ph.D.]
Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM: Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod 2011, 85:62-69.
http://dx.doi.org/10.1095/biolreprod.110.088815
PMid:21311036
Sturmey RG, Leese HJ: Energy metabolism in pig oocytes and early embryos. Reproduction 2003, 126:197-204.
http://dx.doi.org/10.1530/rep.0.1260197
PMid:12887276
Ferguson EM, Leese HJ: Triglyceride content of bovine oocytes and early embryos. J.Reprod.Fertil. 1999, 116:373-378.
http://dx.doi.org/10.1530/jrf.0.1160373
PMid:10615263
Barcelo-Fimbres M, Seidel GE, Jr.: Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation. Mol Reprod Dev 2007, 74:1395-1405.
http://dx.doi.org/10.1002/mrd.20699
PMid:17342731
De La Torre-Sanchez JF, Preis K, Seidel GE, Jr.: Metabolic regulation of in-vitro-produced bovine embryos. I. Effects of metabolic regulators at different glucose concentrations with embryos produced by semen from different bulls. Reprod Fertil Dev 2006, 18:585-596.
http://dx.doi.org/10.1071/RD05063
PMid:16836965
Gajda B, Romek M, Grad I, Krzysztofowicz E, Bryla M, Smorag Z: Lipid content and cryotolerance of porcine embryos cultured with phenazine ethosulfate. Cryo Letters 2011, 32:349-357.
Romek M, Gajda B, Krzysztofowicz E, Kepczynski M, Smorag Z: Lipid content in pig blastocysts cultured in the presence or absence of protein and vitamin E or phenazine ethosulfate. Folia Biol (Krakow) 2011, 59:45-52.
http://dx.doi.org/10.3409/fb59_1-2.45-52
Nicol CJ, Zielenski J, Tsui LC, Wells PG: An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J. 2000, 14:111-127.
PMid:10627286
Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW: Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009, 108:4-18.
http://dx.doi.org/10.1093/toxsci/kfn263
PMid:19126598
Yoshida M, Ishigaki K, Nagai T, Chikyu M, Pursel VG: Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol Reprod 1993, 49:89-94.
http://dx.doi.org/10.1095/biolreprod49.1.89
PMid:8353194
Barcelo-Fimbres M, Brink Z, Seidel GE, Jr.: Effects of phenazine ethosulfate during culture of bovine embryos on pregnancy rate, prenatal and postnatal development. Theriogenology 2009, 71:355-368.
http://dx.doi.org/10.1016/j.theriogenology.2008.08.002
PMid:18801561
You J, Lee J, Hyun SH, Lee E: L-carnitine treatment during oocyte maturation improves in vitro development of cloned pig embryos by influencing intracellular glutathione synthesis and embryonic gene expression. Theriogenology 2012, 78:235-243.
http://dx.doi.org/10.1016/j.theriogenology.2012.02.027
PMid:22578613
Dunning KR, Akison LK, Russell DL, Norman RJ, Robker RL: Increased beta-oxidation and improved oocyte developmental competence in response to l-carnitine during ovarian in vitro follicle development in mice. Biol Reprod 2011, 85:548-555.
http://dx.doi.org/10.1095/biolreprod.110.090415
PMid:21613630
Men H, Agca Y, Riley LK, Critser JK: Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 2006, 66:2008-2016.
http://dx.doi.org/10.1016/j.theriogenology.2006.05.018
PMid:16870242
Fu X-W, Wu G-Q, Li J-J, Hou Y-P, Zhou G-B, Lun S, Wang Y-P, Zhu S-E: Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes. Theriogenology 2011, 75:268-275.
http://dx.doi.org/10.1016/j.theriogenology.2010.08.013
PMid:21187280
Leese HJ: Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 2002, 24:845-849.
http://dx.doi.org/10.1002/bies.10137
PMid:12210521
Leroy JL, Genicot G, Donnay I, Van Soom A: Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod Domest Anim 2005, 40:76-78.
http://dx.doi.org/10.1111/j.1439-0531.2004.00556.x
PMid:15655006
Tong L, Harwood HJ, Jr.: Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J.Cell Biochem. 2006, 99:1476-1488.
http://dx.doi.org/10.1002/jcb.21077
PMid:16983687
Jump DB, Torres-Gonzalez M, Olson LK: Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochem Pharmacol 2011, 81:649-660.
http://dx.doi.org/10.1016/j.bcp.2010.12.014
PMid:21184748 PMCid:PMC3031740
Tucker SC, Honn KV: Emerging targets in lipid-based therapy. Biochem Pharmacol 2013, 85:673-688.
http://dx.doi.org/10.1016/j.bcp.2012.11.028
PMid:23261527
Jones NP, Schulze A: Targeting cancer metabolism--aiming at a tumour's sweet-spot. Drug Discov Today 2012, 17:232-241.
http://dx.doi.org/10.1016/j.drudis.2011.12.017
PMid:22207221
Bolden C, Abdela W, Samuel T, Simon L, Wirtu G: Expression of acetyl coenzyme A carboxylase (ACC alpha) in feline, canine and porcine oocytes. Reprod Fertil Dev 2011, 24:184-184.
http://dx.doi.org/10.1071/RDv24n1Ab144
McGill J, Reddy G, Simon L, Wirtu G: Effect of acetyl-CoA carboxylase (ACC) inhibitor on the lipid content and nuclear maturation of canine oocytes. Reprod Fertil Dev 2013, 26.
Songsasen N, Wesselowski S, Carpenter JW, Wildt DE: The ability to achieve meiotic maturation in the dog oocyte is linked to glycolysis and glutamine oxidation. Mol Reprod Dev 2012, 79:186-196.
http://dx.doi.org/10.1002/mrd.22011
PMid:22213348 PMCid:PMC3288629
Vrablik TL, Watts JL: Emerging roles for specific fatty acids in developmental processes. Genes Dev 2012, 26:631-637.
http://dx.doi.org/10.1101/gad.190777.112
PMid:22474257 PMCid:PMC3323873
Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S: Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am J Physiol Endocrinol Metab 2013, 304:E599-613.
http://dx.doi.org/10.1152/ajpendo.00469.2012
PMid:23321473
Downs SM, Mosey JL, Klinger J: Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev 2009, 76:844-853.
http://dx.doi.org/10.1002/mrd.21047
PMid:19455666
Pikiou O, Vasilaki A, Leondaritis G, Vamvakopoulos N, Messinis IE: Effects of metformin on fertilisation of bovine oocytes and early embryo development: possible involvement of AMPK3-mediated TSC2 activation. Zygote 2013:1-10.
http://dx.doi.org/10.1017/S0967199413000300
PMid:23870192
Glatz JFC, Luiken JJFP, Bonen A: Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 2010, 90:367-417.
http://dx.doi.org/10.1152/physrev.00003.2009
PMid:20086080
Abe H, Yamashita S, Satoh T, Hoshi H: Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev. 2002, 61:57-66.
http://dx.doi.org/10.1002/mrd.1131
PMid:11774376
DOI: http://dx.doi.org/10.14259%2Ftcb.v1i1.60
Refbacks
- There are currently no refbacks.




